Your browser doesn't support javascript.
loading
Gene-metabolite annotation with shortest reactional distance enhances metabolite genome-wide association studies results.
Baron, Cantin; Cherkaoui, Sarah; Therrien-Laperriere, Sandra; Ilboudo, Yann; Poujol, Raphaël; Mehanna, Pamela; Garrett, Melanie E; Telen, Marilyn J; Ashley-Koch, Allison E; Bartolucci, Pablo; Rioux, John D; Lettre, Guillaume; Rosiers, Christine Des; Ruiz, Matthieu; Hussin, Julie G.
Afiliação
  • Baron C; Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada.
  • Cherkaoui S; Montreal Heart Institute, Montréal, QC, Canada.
  • Therrien-Laperriere S; Montreal Heart Institute, Montréal, QC, Canada.
  • Ilboudo Y; Division of Oncology and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
  • Poujol R; Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France.
  • Mehanna P; Montreal Heart Institute, Montréal, QC, Canada.
  • Garrett ME; Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada.
  • Telen MJ; Montreal Heart Institute, Montréal, QC, Canada.
  • Ashley-Koch AE; Montreal Heart Institute, Montréal, QC, Canada.
  • Bartolucci P; Montreal Heart Institute, Montréal, QC, Canada.
  • Rioux JD; Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA.
  • Lettre G; Division of Hematology, Department of Medicine, Duke University Medical Center, Durham, NC, USA.
  • Rosiers CD; Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA.
  • Ruiz M; Université Paris Est Créteil, Hôpitaux Universitaires Henri Mondor, APHP, Sickle cell referral center - UMGGR, Créteil, France.
  • Hussin JG; Université Paris Est Créteil, IMRB, Laboratory of excellence LABEX, Créteil, France.
iScience ; 26(12): 108473, 2023 Dec 15.
Article em En | MEDLINE | ID: mdl-38077122
Metabolite genome-wide association studies (mGWAS) have advanced our understanding of the genetic control of metabolite levels. However, interpreting these associations remains challenging due to a lack of tools to annotate gene-metabolite pairs beyond the use of conservative statistical significance threshold. Here, we introduce the shortest reactional distance (SRD) metric, drawing from the comprehensive KEGG database, to enhance the biological interpretation of mGWAS results. We applied this approach to three independent mGWAS, including a case study on sickle cell disease patients. Our analysis reveals an enrichment of small SRD values in reported mGWAS pairs, with SRD values significantly correlating with mGWAS p values, even beyond the standard conservative thresholds. We demonstrate the utility of SRD annotation in identifying potential false negatives and inaccuracies within current metabolic pathway databases. Our findings highlight the SRD metric as an objective, quantitative and easy-to-compute annotation for gene-metabolite pairs, suitable to integrate statistical evidence to biological networks.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: IScience Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Canadá

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: IScience Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Canadá