Your browser doesn't support javascript.
loading
Position-based anchor optimization for point supervised dense nuclei detection.
Yao, Jieru; Han, Longfei; Guo, Guangyu; Zheng, Zhaohui; Cong, Runmin; Huang, Xiankai; Ding, Jin; Yang, Kaihui; Zhang, Dingwen; Han, Junwei.
Afiliação
  • Yao J; Brain and Artificial Intelligence Lab, School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
  • Han L; School of Computer Science, Beijing Technology and Business University, Beijing, 100048, China; Hefei Comprehensive National Science Center, Hefei, Anhui, 230088, China.
  • Guo G; Brain and Artificial Intelligence Lab, School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
  • Zheng Z; Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China. Electronic address: zhengzh@fmmu.edu.cn.
  • Cong R; School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250100, China.
  • Huang X; Beijing Technology and Business University, Beijing, 100048, China.
  • Ding J; Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
  • Yang K; School of software, Nanchang University, Nanchang, Jiangxi, 330031, China.
  • Zhang D; Brain and Artificial Intelligence Lab, School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Hefei Comprehensive National Science Center, Hefei, Anhui, 230088, China; Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, Xi'
  • Han J; Hefei Comprehensive National Science Center, Hefei, Anhui, 230088, China.
Neural Netw ; 171: 159-170, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38091760
ABSTRACT
Nuclei detection is one of the most fundamental and challenging problems in histopathological image analysis, which can localize nuclei to provide effective computer-aided cancer diagnosis, treatment decision, and prognosis. The fully-supervised nuclei detector requires a large number of nuclei annotations on high-resolution digital images, which is time-consuming and needs human annotators with professional knowledge. In recent years, weakly-supervised learning has attracted significant attention in reducing the labeling burden. However, detecting dense nuclei of complex crowded distribution and diverse appearances remains a challenge. To solve this problem, we propose a novel point-supervised dense nuclei detection framework that introduces position-based anchor optimization to complete morphology-based pseudo-label supervision. Specifically, we first generate cellular-level pseudo labels (CPL) for the detection head via a morphology-based mechanism, which can help to build a baseline point-supervised detection network. Then, considering the crowded distribution of the dense nuclei, we propose a mechanism called Position-based Anchor-quality Estimation (PAE), which utilizes the positional deviation between an anchor and its corresponding point label to suppress low-quality detections far from each nucleus. Finally, to better handle the diverse appearances of nuclei, an Adaptive Anchor Selector (AAS) operation is proposed to automatically select positive and negative anchors according to morphological and positional statistical characteristics of nuclei. We conduct comprehensive experiments on two widely used benchmarks, MO and Lizard, using ResNet50 and PVTv2 as backbones. The results demonstrate that the proposed approach has superior capacity compared with other state-of-the-art methods. In particularly, in dense nuclei scenarios, our method can achieve 95.1% performance of the fully-supervised approach. The code is available at https//github.com/NucleiDet/DenseNucleiDet.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diagnóstico por Computador / Benchmarking Limite: Humans Idioma: En Revista: Neural Netw Assunto da revista: NEUROLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diagnóstico por Computador / Benchmarking Limite: Humans Idioma: En Revista: Neural Netw Assunto da revista: NEUROLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China