Your browser doesn't support javascript.
loading
Evidence for Quantum Stripe Ordering in a Triangular Optical Lattice.
Wang, Xiao-Qiong; Luo, Guang-Quan; Liu, Jin-Yu; Huang, Guan-Hua; Li, Zi-Xiang; Wu, Congjun; Hemmerich, Andreas; Xu, Zhi-Fang.
Afiliação
  • Wang XQ; Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.
  • Luo GQ; Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
  • Liu JY; Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.
  • Huang GH; Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
  • Li ZX; Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.
  • Wu C; Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
  • Hemmerich A; Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.
  • Xu ZF; Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
Phys Rev Lett ; 131(22): 226001, 2023 Dec 01.
Article em En | MEDLINE | ID: mdl-38101378
ABSTRACT
Understanding strongly correlated quantum materials, such as high-T_{c} superconductors, iron-based superconductors, and twisted bilayer graphene systems, remains as one of the outstanding challenges in condensed matter physics. Quantum simulation with ultracold atoms in particular optical lattices, which provide orbital degrees of freedom, is a powerful tool to contribute new insights to this endeavor. Here, we report the experimental realization of an unconventional Bose-Einstein condensate of ^{87}Rb atoms populating degenerate p orbitals in a triangular optical lattice, exhibiting remarkably long coherence times. Using time-of-flight spectroscopy, we observe that this state spontaneously breaks the rotational symmetry and its momentum spectrum agrees with the theoretically predicted coexistence of exotic stripe and loop-current orders. Like certain strongly correlated electronic systems with intertwined orders, such as high-T_{c} cuprate superconductors, twisted bilayer graphene, and the recently discovered chiral density-wave state in kagome superconductors AV_{3}Sb_{5} (A=K, Rb, Cs), the newly demonstrated quantum state, in spite of its markedly different energy scale and the bosonic quantum statistics, exhibits multiple symmetry breakings at ultralow temperatures. These findings hold the potential to enhance our comprehension of the fundamental physics governing these intricate quantum materials.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China