Your browser doesn't support javascript.
loading
Cellstitch: 3D cellular anisotropic image segmentation via optimal transport.
Liu, Yining; Jin, Yinuo; Azizi, Elham; Blumberg, Andrew J.
Afiliação
  • Liu Y; Department of Computer Science, Columbia University, New York, USA.
  • Jin Y; Irving Institute for Cancer Dynamics, New York, USA.
  • Azizi E; Department of Biomedical Engineering, Columbia University, New York, USA.
  • Blumberg AJ; Irving Institute for Cancer Dynamics, New York, USA.
BMC Bioinformatics ; 24(1): 480, 2023 Dec 15.
Article em En | MEDLINE | ID: mdl-38102537
ABSTRACT

BACKGROUND:

Spatial mapping of transcriptional states provides valuable biological insights into cellular functions and interactions in the context of the tissue. Accurate 3D cell segmentation is a critical step in the analysis of this data towards understanding diseases and normal development in situ. Current approaches designed to automate 3D segmentation include stitching masks along one dimension, training a 3D neural network architecture from scratch, and reconstructing a 3D volume from 2D segmentations on all dimensions. However, the applicability of existing methods is hampered by inaccurate segmentations along the non-stitching dimensions, the lack of high-quality diverse 3D training data, and inhomogeneity of image resolution along orthogonal directions due to acquisition constraints; as a result, they have not been widely used in practice.

METHODS:

To address these challenges, we formulate the problem of finding cell correspondence across layers with a novel optimal transport (OT) approach. We propose CellStitch, a flexible pipeline that segments cells from 3D images without requiring large amounts of 3D training data. We further extend our method to interpolate internal slices from highly anisotropic cell images to recover isotropic cell morphology.

RESULTS:

We evaluated the performance of CellStitch through eight 3D plant microscopic datasets with diverse anisotropic levels and cell shapes. CellStitch substantially outperforms the state-of-the art methods on anisotropic images, and achieves comparable segmentation quality against competing methods in isotropic setting. We benchmarked and reported 3D segmentation results of all the methods with instance-level precision, recall and average precision (AP) metrics.

CONCLUSIONS:

The proposed OT-based 3D segmentation pipeline outperformed the existing state-of-the-art methods on different datasets with nonzero anisotropy, providing high fidelity recovery of 3D cell morphology from microscopic images.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Imageamento Tridimensional Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Imageamento Tridimensional Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos