Your browser doesn't support javascript.
loading
Hydrophobic Hydrogen-Bonded Polymer Network for Efficient and Stable Perovskite/Si Tandem Solar Cells.
Liu, Lu; Farhadi, Bita; Li, Jianxun; Liu, Siyi; Lu, Linfeng; Wang, Hui; Du, Minyong; Yang, Liyou; Bao, Shaojuan; Jiang, Xiao; Dong, Xinrui; Miao, Qingqing; Li, Dongdong; Wang, Kai; Liu, Shengzhong Frank.
Afiliação
  • Liu L; Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China.
  • Farhadi B; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
  • Li J; Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China.
  • Liu S; Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China.
  • Lu L; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
  • Wang H; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
  • Du M; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
  • Yang L; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
  • Bao S; Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China.
  • Jiang X; JINNENG Clean Energy Technology LTD, Shanxi Comprehensive Reform Model Area, Jinzhong Area, Shanxi, 030300, China.
  • Dong X; JINNENG Clean Energy Technology LTD, Shanxi Comprehensive Reform Model Area, Jinzhong Area, Shanxi, 030300, China.
  • Miao Q; Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China.
  • Li D; Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China.
  • Wang K; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
  • Liu SF; Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
Angew Chem Int Ed Engl ; 63(8): e202317972, 2024 Feb 19.
Article em En | MEDLINE | ID: mdl-38116884
ABSTRACT
The pursuit of highly efficient and stable wide-band gap (WBG) perovskite solar cells (PSCs), especially for monolithic perovskite/silicon tandem devices, is a key focus in achieving the commercialization of perovskite photovoltaics. In this study, we initially designed poly(ionic liquid)s (PILs) with varying alkyl chain lengths based on density functional theory calculations. Results pinpoint that PILs with longer alkyl chain lengths tend to exhibit more robust binding energy with the perovskite structure. Then we synthesized the PILs to craft a hydrophobic hydrogen-bonded polymer network (HHPN) that passivates the WBG perovskite/electron transport layer interface, inhibits ion migration and serves as a barrier layer against water and oxygen ingression. Accordingly, the HHPN effectively curbs nonradiative recombination losses while facilitating efficient carrier transport, resulting in substantially enhanced open-circuit voltage (Voc ) and fill factor. As a result, the optimized single-junction WBG PSC achieves an impressive efficiency of 23.18 %, with Voc as high as 1.25 V, which is the highest reported for WBG (over 1.67 eV) PSCs. These devices also demonstrate outstanding thermostability and humidity resistance. Notably, this versatile strategy can be extended to textured perovskite/silicon tandem cells, reaching a remarkable efficiency of 28.24 % while maintaining exceptional operational stability.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China