Your browser doesn't support javascript.
loading
Understanding Electrochemical Performance Enhancement with Quaternary NCMA Cathode Materials.
Dong, Shengde; Liu, Fang; Leng, Yue; Sun, Yanxia; Hai, Chunxi; Chen, Xianfei; Zhou, Yuan.
Afiliação
  • Dong S; College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
  • Liu F; Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institution, Chengdu University of Technology, Chengdu 610059, China.
  • Leng Y; College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
  • Sun Y; College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
  • Hai C; Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institution, Chengdu University of Technology, Chengdu 610059, China.
  • Chen X; College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
  • Zhou Y; College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
Langmuir ; 40(1): 668-676, 2024 Jan 09.
Article em En | MEDLINE | ID: mdl-38117257
ABSTRACT
Ni-rich cathode materials show promise for use in lithium-ion batteries. However, a significant obstacle to their widespread adoption is the structural damage caused by microcracks. This research paper presents the synthesis of Ni-rich cathode materials, including LiNi0.8Co0.1Mn0.1O2 (referred to as NCM) and Li(Ni0.8Co0.1Mn0.1)0.98Al0.02O2 (referred to as NCMA), achieved through the high-temperature solid-phase method. Electrochemical (EC) testing results reveal the impressive EC performance of NCMA. NCMA exhibited a discharge capacity of 141.6 mAh g-1 and maintained a cycle retention rate of up to 74.92% after 300 cycles at a 1 C rate. In contrast, the NCM had a discharge capacity of 109.7 mAh g-1 and a cycle retention rate of 61.22%. Atomic force microscopy showed that the Derjaguin-Muller-Toporov (DMT) modulus value of NCMA exceeded that of NCM, signifying a greater mechanical strength of NCMA. Density functional theory calculations demonstrated that the addition of aluminum during the delithiation process led to the mitigation of anisotropic lattice changes and the stabilization of the NCMA structure. This improvement was attributed to the relatively stronger Al-O bonds compared to the Ni(Co, Mn)-O bonds, which reduced the formation of microcracks by enhancing NCMA's mechanical strength.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Langmuir Assunto da revista: QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Langmuir Assunto da revista: QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China