Your browser doesn't support javascript.
loading
Evaluation of urinary limonene metabolites as biomarkers of exposure to greenness.
Xie, Zhengzhi; Sutaria, Saurin R; Chen, Jin Y; Gao, Hong; Conklin, Daniel J; Keith, Rachel J; Srivastava, Sanjay; Lorkiewicz, Pawel; Bhatnagar, Aruni.
Afiliação
  • Xie Z; Christina Lee Brown Envirome Institute, University of Louisville, USA; Superfund Research Center, University of Louisville, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, USA; Division of Environmental Medicine, Department of Medicine, University o
  • Sutaria SR; Christina Lee Brown Envirome Institute, University of Louisville, USA; Superfund Research Center, University of Louisville, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, USA; Division of Environmental Medicine, Department of Medicine, University o
  • Chen JY; Christina Lee Brown Envirome Institute, University of Louisville, USA; Superfund Research Center, University of Louisville, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, USA; Division of Environmental Medicine, Department of Medicine, University o
  • Gao H; Christina Lee Brown Envirome Institute, University of Louisville, USA; Superfund Research Center, University of Louisville, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, USA; Division of Environmental Medicine, Department of Medicine, University o
  • Conklin DJ; Christina Lee Brown Envirome Institute, University of Louisville, USA; Superfund Research Center, University of Louisville, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, USA; Division of Environmental Medicine, Department of Medicine, University o
  • Keith RJ; Christina Lee Brown Envirome Institute, University of Louisville, USA; Superfund Research Center, University of Louisville, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, USA; Division of Environmental Medicine, Department of Medicine, University o
  • Srivastava S; Christina Lee Brown Envirome Institute, University of Louisville, USA; Superfund Research Center, University of Louisville, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, USA; Division of Environmental Medicine, Department of Medicine, University o
  • Lorkiewicz P; Christina Lee Brown Envirome Institute, University of Louisville, USA; Superfund Research Center, University of Louisville, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, USA; Department of Chemistry, University of Louisville, USA; Division of Envi
  • Bhatnagar A; Christina Lee Brown Envirome Institute, University of Louisville, USA; Superfund Research Center, University of Louisville, USA; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, USA; Division of Environmental Medicine, Department of Medicine, University o
Environ Res ; 245: 117991, 2024 Mar 15.
Article em En | MEDLINE | ID: mdl-38141921
ABSTRACT
Exposure to plants is known to improve physical and mental health and living in areas of high vegetation is associated with better health. The addition of quantitative measures of greenness exposure at individual-level to other objective and subjective study measures will help establish cause-and-effect relationships between greenspaces and human health. Because limonene is one of the most abundant biogenic volatile organic compounds emitted by plants, we hypothesized that urinary metabolites of inhaled limonene can serve as biomarkers of exposure to greenness. To test our hypothesis, we analyzed urine samples collected from eight human volunteers after limonene inhalation or after greenness exposure using liquid chromatography-high resolution mass spectrometry-based profiling. Eighteen isomers of nine metabolites were detected in urine after limonene inhalation, and their kinetic parameters were estimated using nonlinear mixed effect models. Urinary levels of most abundant limonene metabolites were elevated after brief exposure to a forested area, and the ratio of urinary limonene metabolites provided evidence of recent exposure. The identities and structures of these metabolites were validated using stable isotope tracing and tandem mass spectral comparison. Together, these data suggest that urinary metabolites of limonene, especially uroterpenol glucuronide and dihydroperillic acid glucuronide, could be used as individualized biomarkers of greenness exposure.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Plantas / Glucuronídeos Limite: Humans Idioma: En Revista: Environ Res Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Plantas / Glucuronídeos Limite: Humans Idioma: En Revista: Environ Res Ano de publicação: 2024 Tipo de documento: Article