Your browser doesn't support javascript.
loading
A Single Set of Well-Designed Aptamer Probes for Reliable On-site Qualitative and Ultra-Sensitive Quantitative Detection.
Zhang, Wei-Qi; Tu, Yi-Dan; Liu, Hong; Liu, Rui; Zhang, Xiao-Jin; Jiang, Lei; Huang, Yu; Xia, Fan.
Afiliação
  • Zhang WQ; State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China.
  • Tu YD; State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China.
  • Liu H; State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China.
  • Liu R; State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China.
  • Zhang XJ; State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China.
  • Jiang L; CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
  • Huang Y; State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China.
  • Xia F; State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China.
Angew Chem Int Ed Engl ; 63(13): e202316434, 2024 03 22.
Article em En | MEDLINE | ID: mdl-38192021
ABSTRACT
Aptamer-based probes are pivotal components in various sensing strategies, owing to their exceptional specificity and versatile programmable structure. Nevertheless, numerous aptamer-based probes usually offer only a single function, limiting their capacity to meet the diverse requirements of multi-faceted sensing systems. Here, we introduced supersandwich DNA probes (SSW-DNA), designed and modified on the outer surface of nanochannels with hydrophobic inner walls, enabling dual functionality qualitative detection for on-site analysis and quantitative detection for precise analysis. The fragmented DNAs resulting from the target recognition, are subsequently identified through lateral flow assays, enabling robust on-site qualitative detection of microcystin-LR with an impressively low limit of detection (LOD) at 0.01 µg/L. Meanwhile, the nanochannels enable highly sensitive quantification of microcystin-LR through the current analysis, achieving an exceptionally low LOD at 2.5×10-7  µg/L, with a broad dynamic range spanning from 1×10-6 to 1×102  µg/L. Furthermore, the process of target recognition introduces just a single potential error propagation, which reduces the overall risk of errors during the entire qualitative and quantitative detection process. This sensing strategy broadens the scope of applications for aptamer-based composite probes, holding promising implications across diverse fields, such as medical diagnosis, food safety, and environmental protection.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Aptâmeros de Nucleotídeos Tipo de estudo: Diagnostic_studies / Qualitative_research Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Aptâmeros de Nucleotídeos Tipo de estudo: Diagnostic_studies / Qualitative_research Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article