Your browser doesn't support javascript.
loading
Differentiation and risk stratification of basal cell carcinoma with deep learning on histopathologic images and measuring nuclei and tumor microenvironment features.
Lan, Xuemei; Guo, Guanchen; Wang, Xiaopo; Yan, Qiao; Xue, Ruzeng; Li, Yufen; Zhu, Jiaping; Dong, Zhengbang; Wang, Fei; Li, Guomin; Wang, Xiangxue; Xu, Jun; Jiang, Yiqun.
Afiliação
  • Lan X; Department of Dermatopathology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China.
  • Guo G; lnstitute for Al in Medicine, School of Artificial lntelligence, Nanjing University of Information Science and Technology, Nanjing, China.
  • Wang X; Department of Dermatopathology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China.
  • Yan Q; Department of Dermatology, School of Medicine, Zhong Da Hospital, Southeast University, Nanjing, China.
  • Xue R; Dermatology Hospital, Southern Medical University, Guangzhou, China.
  • Li Y; Department of Dermatopathology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China.
  • Zhu J; Department of Dermatopathology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China.
  • Dong Z; Department of Dermatology, School of Medicine, Zhong Da Hospital, Southeast University, Nanjing, China.
  • Wang F; Department of Dermatology, School of Medicine, Zhong Da Hospital, Southeast University, Nanjing, China.
  • Li G; Dermatology Hospital, Southern Medical University, Guangzhou, China.
  • Wang X; lnstitute for Al in Medicine, School of Artificial lntelligence, Nanjing University of Information Science and Technology, Nanjing, China.
  • Xu J; lnstitute for Al in Medicine, School of Artificial lntelligence, Nanjing University of Information Science and Technology, Nanjing, China.
  • Jiang Y; Department of Dermatopathology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China.
Skin Res Technol ; 30(1): e13571, 2024 Jan.
Article em En | MEDLINE | ID: mdl-38196164
ABSTRACT

BACKGROUND:

Nuclear pleomorphism and tumor microenvironment (TME) play a critical role in cancer development and progression. Identifying most predictive nuclei and TME features of basal cell carcinoma (BCC) may provide insights into which characteristics pathologists can use to distinguish and stratify this entity.

OBJECTIVES:

To develop an automated workflow based on nuclei and TME features from basaloid cell tumor regions to differentiate BCC from trichoepithelioma (TE) and stratify BCC into high-risk (HR) and low-risk (LR) subtypes, and to identify the nuclear and TME characteristics profile of different basaloid cell tumors.

METHODS:

The deep learning systems were trained on 161 H&E -stained sections which contained 51 sections of HR-BCC, 50 sections of LR-BCC and 60 sections of TE from one institution (D1), and externally and independently validated on D2 (46 sections) and D3 (76 sections), from 2015 to 2022. 60%, 20% and 20% of D1 data were randomly splitted for training, validation and testing, respectively. The framework comprised four stages tumor regions identification by multi-head self-attention (MSA) U-Net, nuclei segmentation by HoVer-Net, quantitative feature by handcrafted extraction, and differentiation and risk stratification classifier construction. Pixel accuracy, precision, recall, dice score, intersection over union (IoU) and area under the curve (AUC) were used to evaluate the performance of tumor segmentation model and classifiers.

RESULTS:

MSA-U-Net model detected tumor regions with 0.910 precision, 0.869 recall, 0.889 dice score and 0.800 IoU. The differentiation classifier achieved 0.977 ± 0.0159, 0.955 ± 0.0181, 0.885 ± 0.0237 AUC in D1, D2 and D3, respectively. The most discriminative features between BCC and TE contained Homogeneity, Elongation, T-T_meanEdgeLength, T-T_Nsubgraph, S-T_HarmonicCentrality, S-S_Degrees. The risk stratification model can well predict HR-BCC and LR-BCC with 0.920 ± 0.0579, 0.839 ± 0.0176, 0.825 ± 0.0153 AUC in D1, D2 and D3, respectively. The most discriminative features between HR-BCC and LR-BCC comprised IntensityMin, Solidity, T-T_minEdgeLength, T-T_Coreness, T-T_Degrees, T-T_Betweenness, S-T_Degrees.

CONCLUSIONS:

This framework hold potential for future use as a second opinion helping inform diagnosis of BCC, and identify nuclei and TME features related with malignancy and tumor risk stratification.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Cutâneas / Carcinoma Basocelular / Aprendizado Profundo Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Skin Res Technol Assunto da revista: DERMATOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Cutâneas / Carcinoma Basocelular / Aprendizado Profundo Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Skin Res Technol Assunto da revista: DERMATOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China