Your browser doesn't support javascript.
loading
Formation of Three-Dimensional Polysuccinimide Electrospun Fiber Meshes Induced by the Combination of CaCl2 and Humidity.
Juhász, Ákos György; Nanys, Monika; Pinke, Balázs; Fadel, Alexandre; Godzierz, Marcin; Juriga-Tóth, Krisztina; Molnár, Kolos; Juriga, Dávid; Jedlovszky-Hajdú, Angéla.
Afiliação
  • Juhász ÁG; Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4., Budapest, H-1089, Hungary.
  • Nanys M; Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4., Budapest, H-1089, Hungary.
  • Pinke B; Department of Polymer Engineering, Budapest University of Technology and Economics, Muegyetem rkp. 3, Budapest, H-1111, Hungary.
  • Fadel A; UMR 8207, UMET-Unité Matériaux et Transformations, University Lille, CNRS, INRAE, Centrale Lille, Lille, F-59000, France.
  • Godzierz M; Centre of Polymer and Carbon Materials Polish Academy of Sciences M. Curie-Sklodowskiej 34 Str, Zabrze, 41-819, Poland.
  • Juriga-Tóth K; Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4., Budapest, H-1089, Hungary.
  • Molnár K; Department of Polymer Engineering, Budapest University of Technology and Economics, Muegyetem rkp. 3, Budapest, H-1111, Hungary.
  • Juriga D; HUN-REN-BME Research Group for Composite Science and Technology, Muegyetem rkp. 3, Budapest, H-1111, Hungary.
  • Jedlovszky-Hajdú A; MTA-BME Lendület Sustainable Polymers Research Group, Muegyetem rkp. 3, Budapest, H-1111, Hungary.
Macromol Rapid Commun ; 45(7): e2300625, 2024 Apr.
Article em En | MEDLINE | ID: mdl-38206977
ABSTRACT
Even though electrospinning is getting more and more attention, the preparation of 3D nanofibrous meshes is still a big challenge that limits the application of electrospun materials, especially in tissue engineering. To overcome this problem, several solutions are introduced but most of them focus on the postprocessing of the electrospun meshes. This paper presents a straightforward novel method that utilizes the joint effect of the addition of CaCl2 and the relative environmental humidity (RH), which can induce the random 3D formation of polysuccinimide (PSI) electrospun fibers with different such as wrinkled or ribbon-like structures. Although the effect of humidity and inorganic salt additives on the micro and macrostructure of electrospun fibers is known, the connection between the two in this manner has never been presented. To investigate the effect, fibers with different PSI and CaCl2 concentrations at different humidity RH levels are prepared, and their microstructure is visualized with high-resolution scanning electron microscopy (SEM). To reveal the nature of the interaction between the polymer and the CaCl2, Fourier-transformed infrared (FTIR), X-ray diffraction (XRD), and thermogravimetry (TGA) measurements are carried out and 3D nanofibrous structures are obtained.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ácido Aspártico / Engenharia Tecidual / Nanofibras Idioma: En Revista: Macromol Rapid Commun Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Hungria

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ácido Aspártico / Engenharia Tecidual / Nanofibras Idioma: En Revista: Macromol Rapid Commun Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Hungria