Your browser doesn't support javascript.
loading
Spatial multiomics of arterial regions from cardiac allograft vasculopathy rejected grafts reveal novel insights into the pathogenesis of chronic antibody-mediated rejection.
Nevarez-Mejia, Jessica; Pickering, Harry; Sosa, Rebecca A; Valenzuela, Nicole M; Fishbein, Gregory A; Baldwin, William M; Fairchild, Robert L; Reed, Elaine F.
Afiliação
  • Nevarez-Mejia J; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA.
  • Pickering H; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA.
  • Sosa RA; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA.
  • Valenzuela NM; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA.
  • Fishbein GA; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA.
  • Baldwin WM; Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
  • Fairchild RL; Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
  • Reed EF; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA. Electronic address: ereed@mednet.ucla.edu.
Am J Transplant ; 24(7): 1146-1160, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38219867
ABSTRACT
Cardiac allograft vasculopathy (CAV) causes late graft failure and mortality after heart transplantation. Donor-specific antibodies (DSAs) lead to chronic endothelial cell injury, inflammation, and arterial intimal thickening. In this study, GeoMx digital spatial profiling was used to analyze arterial areas of interest (AOIs) from CAV+DSA+ rejected cardiac allografts (N = 3; 22 AOIs total). AOIs were categorized based on CAV neointimal thickening and underwent whole transcriptome and protein profiling. By comparing our transcriptomic data with that of healthy control vessels of rapid autopsy myocardial tissue, we pinpointed specific pathways and transcripts indicative of heightened inflammatory profiles in CAV lesions. Moreover, we identified protein and transcriptomic signatures distinguishing CAV lesions exhibiting low and high neointimal lesions. AOIs with low neointima showed increased markers for activated inflammatory infiltrates, endothelial cell activation transcripts, and gene modules involved in metalloproteinase activation and TP53 regulation of caspases. Inflammatory and apoptotic proteins correlated with inflammatory modules in low neointima AOIs. High neointima AOIs exhibited elevated TGFß-regulated transcripts and modules enriched for platelet activation/aggregation. Proteins associated with growth factors/survival correlated with modules enriched for proliferation/repair in high neointima AOIs. Our findings reveal novel insight into immunological mechanisms mediating CAV pathogenesis.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transplante de Coração / Rejeição de Enxerto Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Female / Humans / Male / Middle aged Idioma: En Revista: Am J Transplant Assunto da revista: TRANSPLANTE Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transplante de Coração / Rejeição de Enxerto Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Female / Humans / Male / Middle aged Idioma: En Revista: Am J Transplant Assunto da revista: TRANSPLANTE Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos