Your browser doesn't support javascript.
loading
Challenges and limitations of synthetic minority oversampling techniques in machine learning.
Alkhawaldeh, Ibraheem M; Albalkhi, Ibrahem; Naswhan, Abdulqadir Jeprel.
Afiliação
  • Alkhawaldeh IM; Faculty of Medicine, Mutah University, Karak 61710, Jordan.
  • Albalkhi I; Department of Neuroradiology, Alfaisal University, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, United Kingdom.
  • Naswhan AJ; Nursing for Education and Practice Development, Hamad Medical Corporation, Doha 3050, Qatar. anashwan@hamad.qa.
World J Methodol ; 13(5): 373-378, 2023 Dec 20.
Article em En | MEDLINE | ID: mdl-38229946
ABSTRACT
Oversampling is the most utilized approach to deal with class-imbalanced datasets, as seen by the plethora of oversampling methods developed in the last two decades. We argue in the following editorial the issues with oversampling that stem from the possibility of overfitting and the generation of synthetic cases that might not accurately represent the minority class. These limitations should be considered when using oversampling techniques. We also propose several alternate strategies for dealing with imbalanced data, as well as a future work perspective.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: World J Methodol Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Jordânia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: World J Methodol Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Jordânia