Your browser doesn't support javascript.
loading
Low solid content mouldable chitin physical hydrogel prepared by atypical rupture-free swelling.
Kaku, Yuto; Okada, Satoshi; Fujisawa, Shuji; Saito, Tsuguyuki; Isobe, Noriyuki.
Afiliação
  • Kaku Y; Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
  • Okada S; Biogeochemistry Research Center, Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan. isoben@jamstec.go.jp.
  • Fujisawa S; Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.
  • Saito T; Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
  • Isobe N; Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
Soft Matter ; 20(6): 1245-1252, 2024 Feb 07.
Article em En | MEDLINE | ID: mdl-38231553
ABSTRACT
In this study, the atypical swelling gelation of chitin physical hydrogels was investigated. Just by tuning the amount of the N-acetylation reagent, the degree of acetylation varied and mouldable chitin hydrogels with a wide variety of gel concentrations (0.2-6.4 wt%) were obtained. In response to the gel concentration, the mechanical properties ranged from swollen soft gels to shrunken rigid gels (compressive moduli of 4-310 kPa). The thus-prepared chitin hydrogels, which were composed of only chitin and water, exhibited high transparency and integrity. The swelling gelation of chitin physical hydrogels was achieved owing to both the positive charges of the amino groups inducing the osmotic pressure and the toughness of the crystalline nanofibrous network structure of the chitin hydrogels that endured the large volume change. These previously unnoticed advantageous aspects of chitin have pioneered a novel area of swellable physical gels that has been exclusive to chemical gels so far.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Soft Matter Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Soft Matter Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Japão