Your browser doesn't support javascript.
loading
A partial epithelial-mesenchymal transition signature for highly aggressive colorectal cancer cells that survive under nutrient restriction.
Pastorino, Gil A; Sheraj, Ilir; Huebner, Kerstin; Ferrero, Giulio; Kunze, Philipp; Hartmann, Arndt; Hampel, Chuanpit; Husnugil, Hepsen Hazal; Maiuthed, Arnatchai; Gebhart, Florian; Schlattmann, Fynn; Gulec Taskiran, Aliye Ezgi; Oral, Goksu; Palmisano, Ralph; Pardini, Barbara; Naccarati, Alessio; Erlenbach-Wuensch, Katharina; Banerjee, Sreeparna; Schneider-Stock, Regine.
Afiliação
  • Pastorino GA; Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
  • Sheraj I; Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey.
  • Huebner K; Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
  • Ferrero G; Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.
  • Kunze P; Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
  • Hartmann A; Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
  • Hampel C; Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
  • Husnugil HH; Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey.
  • Maiuthed A; Department of Pharmacology, Mahidol University, Bangkok, Thailand.
  • Gebhart F; Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.
  • Schlattmann F; Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
  • Gulec Taskiran AE; Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
  • Oral G; Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey.
  • Palmisano R; Department of Molecular Biology and Genetics, Baskent University, Ankara, Turkey.
  • Pardini B; Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey.
  • Naccarati A; Optical Imaging Competence Centre FAU OICE, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
  • Erlenbach-Wuensch K; Italian Institute for Genomic Medicine (IIGM), c/o FPO-IRCCS Candiolo, Turin, Italy.
  • Banerjee S; Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy.
  • Schneider-Stock R; Italian Institute for Genomic Medicine (IIGM), c/o FPO-IRCCS Candiolo, Turin, Italy.
J Pathol ; 262(3): 347-361, 2024 03.
Article em En | MEDLINE | ID: mdl-38235615
ABSTRACT
Partial epithelial-mesenchymal transition (p-EMT) has recently been identified as a hybrid state consisting of cells with both epithelial and mesenchymal characteristics and is associated with the migration, metastasis, and chemoresistance of cancer cells. Here, we describe the induction of p-EMT in starved colorectal cancer (CRC) cells and identify a p-EMT gene signature that can predict prognosis. Functional characterisation of starvation-induced p-EMT in HCT116, DLD1, and HT29 cells showed changes in proliferation, morphology, and drug sensitivity, supported by in vivo studies using the chorioallantoic membrane model. An EMT-specific quantitative polymerase chain reaction (qPCR) array was used to screen for deregulated genes, leading to the establishment of an in silico gene signature that was correlated with poor disease-free survival in CRC patients along with the CRC consensus molecular subtype CMS4. Among the significantly deregulated p-EMT genes, a triple-gene signature consisting of SERPINE1, SOX10, and epidermal growth factor receptor (EGFR) was identified. Starvation-induced p-EMT was characterised by increased migratory potential and chemoresistance, as well as E-cadherin processing and internalisation. Both gene signature and E-cadherin alterations could be reversed by the proteasomal inhibitor MG132. Spatially resolving EGFR expression with high-resolution immunofluorescence imaging identified a proliferation stop in starved CRC cells caused by EGFR internalisation. In conclusion, we have gained insight into a previously undiscovered EMT mechanism that may become relevant when tumour cells are under nutrient stress, as seen in early stages of metastasis. Targeting this process of tumour cell dissemination might help to prevent EMT and overcome drug resistance. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Colorretais Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: J Pathol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Colorretais Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: J Pathol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha