Your browser doesn't support javascript.
loading
Highly Stretchable, Fast Self-Healing, Self-Adhesive, and Strain-Sensitive Wearable Sensor Based on Ionic Conductive Hydrogels.
Li, Ruirui; Ren, Jie; Zhang, Minmin; Li, Meng; Li, Yan; Yang, Wu.
Afiliação
  • Li R; Chemistry & Chemical Engineering College, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Northwest Normal University, Lanzhou 730070, PR China.
  • Ren J; Chemistry & Chemical Engineering College, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Northwest Normal University, Lanzhou 730070, PR China.
  • Zhang M; Chemistry & Chemical Engineering College, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Northwest Normal University, Lanzhou 730070, PR China.
  • Li M; Chemistry & Chemical Engineering College, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Northwest Normal University, Lanzhou 730070, PR China.
  • Li Y; Chemistry & Chemical Engineering College, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Northwest Normal University, Lanzhou 730070, PR China.
  • Yang W; Chemistry & Chemical Engineering College, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Northwest Normal University, Lanzhou 730070, PR China.
Biomacromolecules ; 25(2): 614-625, 2024 Feb 12.
Article em En | MEDLINE | ID: mdl-38241010
ABSTRACT
Conductive hydrogels integrate the conductive performance and soft nature, which is like that of human skin. Thus, they are more suitable for the preparation of wearable human-motion sensors. Nevertheless, the integration of outstanding multiple functionalities, such as stretchability, toughness, biocompatibility, self-healing, adhesion, strain sensitivity, and durability, by a simple way is still a huge challenge. Herein, we have developed a multifunctional chitosan/oxidized hyaluronic acid/hydroxypropyl methylcellulose/poly(acrylic acid)/tannic acid/Al3+ hydrogel (CS/OHA/HPMC/PAA/TA/Al3+) by using a two-step method with hydroxypropyl methylcellulose (HPMC), acrylic acid (AA), tannic acid (TA), chitosan (CS), oxidized hyaluronic acid (OHA), and aluminum chloride hexahydrate (AlCl3·6H2O). Due to the synergistic effect of dynamic imine bonds between CS and OHA, dynamic metal coordination bonds between Al3+ and -COOH and/or TA as well as reversible hydrogen, the hydrogel showed excellent tensile property (elongation at break of 3168%) and desirable toughness (0.79 MJ/m3). The mechanical self-healing efficiency can reach 95.5% at 30 min, and the conductivity can recover in 5.2 s at room temperature without stimulation. The favorable attribute of high transparency (98.5% transmittance) facilitates the transmission of the optical signal and enables visualization of the sensor. It also shows good adhesiveness to various materials and is easy to peel off without residue. The resistance of the hydrogel-based sensors shows good electrical conductivity (2.33 S m-1), good durability, high sensing sensitivity (GF value of 4.12 under 1600% strain), low detection limit (less than 1%), and short response/recovery time (0.54/0.31 s). It adhered to human skin and monitored human movements such as the bending movements of joints, swallowing, and speaking successfully. Therefore, the obtained multifunctional conductive hydrogel has great potential applications in wearable strain sensors.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Quitosana / Polifenóis / Dispositivos Eletrônicos Vestíveis Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: Biomacromolecules Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Quitosana / Polifenóis / Dispositivos Eletrônicos Vestíveis Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: Biomacromolecules Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2024 Tipo de documento: Article