Your browser doesn't support javascript.
loading
Using explainable machine learning to uncover the kinase-substrate interaction landscape.
Zhou, Zhongliang; Yeung, Wayland; Soleymani, Saber; Gravel, Nathan; Salcedo, Mariah; Li, Sheng; Kannan, Natarajan.
Afiliação
  • Zhou Z; School of Computing, University of Georgia, Athens, GA 30602, United States.
  • Yeung W; Institute of Bioinformatics, University of Georgia, Athens, GA 30602, United States.
  • Soleymani S; School of Computing, University of Georgia, Athens, GA 30602, United States.
  • Gravel N; Institute of Bioinformatics, University of Georgia, Athens, GA 30602, United States.
  • Salcedo M; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States.
  • Li S; School of Data Science, University of Virginia, Charlottesville, VA 22903, United States.
  • Kannan N; Institute of Bioinformatics, University of Georgia, Athens, GA 30602, United States.
Bioinformatics ; 40(2)2024 02 01.
Article em En | MEDLINE | ID: mdl-38244571
ABSTRACT
MOTIVATION Phosphorylation, a post-translational modification regulated by protein kinase enzymes, plays an essential role in almost all cellular processes. Understanding how each of the nearly 500 human protein kinases selectively phosphorylates their substrates is a foundational challenge in bioinformatics and cell signaling. Although deep learning models have been a popular means to predict kinase-substrate relationships, existing models often lack interpretability and are trained on datasets skewed toward a subset of well-studied kinases.

RESULTS:

Here we leverage recent peptide library datasets generated to determine substrate specificity profiles of 300 serine/threonine kinases to develop an explainable Transformer model for kinase-peptide interaction prediction. The model, trained solely on primary sequences, achieved state-of-the-art performance. Its unique multitask learning paradigm built within the model enables predictions on virtually any kinase-peptide pair, including predictions on 139 kinases not used in peptide library screens. Furthermore, we employed explainable machine learning methods to elucidate the model's inner workings. Through analysis of learned embeddings at different training stages, we demonstrate that the model employs a unique strategy of substrate prediction considering both substrate motif patterns and kinase evolutionary features. SHapley Additive exPlanation (SHAP) analysis reveals key specificity determining residues in the peptide sequence. Finally, we provide a web interface for predicting kinase-substrate associations for user-defined sequences and a resource for visualizing the learned kinase-substrate associations. AVAILABILITY AND IMPLEMENTATION All code and data are available at https//github.com/esbgkannan/Phosformer-ST. Web server is available at https//phosformer.netlify.app.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Quinases / Biblioteca de Peptídeos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Quinases / Biblioteca de Peptídeos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos