Your browser doesn't support javascript.
loading
The conducted vascular response as a mediator of hypercapnic cerebrovascular reactivity: A modelling study.
Daher, Ali; Payne, Stephen.
Afiliação
  • Daher A; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, United Kingdom. Electronic address: ali.daher@eng.ox.ac.uk.
  • Payne S; Institute of Applied Mechanics, National Taiwan University, Taiwan.
Comput Biol Med ; 170: 107985, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38245966
ABSTRACT
It is well established that the cerebral blood flow (CBF) shows exquisite sensitivity to changes in the arterial blood partial pressure of CO2 ( [Formula see text] ), which is reflected by an index termed cerebrovascular reactivity. In response to elevations in [Formula see text] (hypercapnia), the vessels of the cerebral microvasculature dilate, thereby decreasing the vascular resistance and increasing CBF. Due to the challenges of access, scale and complexity encountered when studying the microvasculature, however, the mechanisms behind cerebrovascular reactivity are not fully understood. Experiments have previously established that the cholinergic release of the Acetylcholine (ACh) neurotransmitter in the cortex is a prerequisite for the hypercapnic response. It is also known that ACh functions as an endothelial-dependent agonist, in which the local administration of ACh elicits local hyperpolarization in the vascular wall; this hyperpolarization signal is then propagated upstream the vascular network through the endothelial layer and is coupled to a vasodilatory response in the vascular smooth muscle (VSM) layer in what is known as the conducted vascular response (CVR). Finally, experimental data indicate that the hypercapnic response is more strongly correlated with the CO2 levels in the tissue than in the arterioles. Accordingly, we hypothesize that the CVR, evoked by increases in local tissue CO2 levels and a subsequent local release of ACh, is responsible for the CBF increase observed in response to elevations in [Formula see text] . By constructing physiologically grounded dynamic models of CBF and control in the cerebral vasculature, ones that integrate the available knowledge and experimental data, we build a new model of the series of signalling events and pathways underpinning the hypercapnic response, and use the model to provide compelling evidence that corroborates the aforementioned hypothesis. If the CVR indeed acts as a mediator of the hypercapnic response, the proposed mechanism would provide an important addition to our understanding of the repertoire of metabolic feedback mechanisms possessed by the brain and would motivate further in-vivo investigation. We also model the interaction of the hypercapnic response with dynamic cerebral autoregulation (dCA), the collection of mechanisms that the brain possesses to maintain near constant CBF despite perturbations in pressure, and show how the dCA mechanisms, which otherwise tend to be overlooked when analysing experimental results of cerebrovascular reactivity, could play a significant role in shaping the CBF response to elevations in [Formula see text] . Such in-silico models can be used in tandem with in-vivo experiments to expand our understanding of cerebrovascular diseases, which continue to be among the leading causes of morbidity and mortality in humans.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dióxido de Carbono / Hipercapnia Limite: Humans Idioma: En Revista: Comput Biol Med Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dióxido de Carbono / Hipercapnia Limite: Humans Idioma: En Revista: Comput Biol Med Ano de publicação: 2024 Tipo de documento: Article