Your browser doesn't support javascript.
loading
Efficient Defect Detection of Rotating Goods under the Background of Intelligent Retail.
Hu, Zhengming; Zeng, Xuepeng; Xie, Kai; Wen, Chang; He, Jianbiao; Zhang, Wei.
Afiliação
  • Hu Z; School of Electronic Information and Electrical Engineering, Yangtze University, Jingzhou 434023, China.
  • Zeng X; School of Electronic Information and Electrical Engineering, Yangtze University, Jingzhou 434023, China.
  • Xie K; School of Electronic Information and Electrical Engineering, Yangtze University, Jingzhou 434023, China.
  • Wen C; School of Computer Science, Yangtze University, Jingzhou 434023, China.
  • He J; School of Computer Science, Central South University, Changsha 410083, China.
  • Zhang W; School of Electronic Information, Central South University, Changsha 410083, China.
Sensors (Basel) ; 24(2)2024 Jan 12.
Article em En | MEDLINE | ID: mdl-38257560
ABSTRACT
Dynamic visual vending machines are rapidly growing in popularity, offering convenience and speed to customers. However, there is a prevalent issue with consumers damaging goods and then returning them to the machine, severely affecting business interests. This paper addresses the issue from the standpoint of defect detection. Although existing industrial defect detection algorithms, such as PatchCore, perform well, they face challenges, including handling goods in various orientations, detection speeds that do not meet real-time monitoring requirements, and complex backgrounds that hinder detection accuracy. These challenges hinder their application in dynamic vending environments. It is crucial to note that efficient visual features play a vital role in memory banks, yet current memory repositories for industrial inspection algorithms do not adequately address the problem of location-specific feature redundancy. To tackle these issues, this paper introduces a novel defect detection algorithm for goods using adaptive subsampling and partitioned memory banks. Firstly, Grad-CAM is utilized to extract deep features, which, in combination with shallow features, mitigate the impact of complex backgrounds on detection accuracy. Next, graph convolutional networks extract rotationally invariant features. The adaptive subsampling partitioned memory bank is then employed to store features of non-defective goods, which reduces memory consumption and enhances training speed. Experimental results on the MVTec AD dataset demonstrate that the proposed algorithm achieves a marked improvement in detection speed while maintaining accuracy that is comparable to state-of-the-art models.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: Sensors (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: Sensors (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China