Your browser doesn't support javascript.
loading
Mechanical response of local regions of subchondral bone under physiological loading conditions.
Shaktivesh, Shaktivesh; Malekipour, Fatemeh; Whitton, R Christopher; Lee, Peter Vs.
Afiliação
  • Shaktivesh S; Data 61, CSIRO, Clayton, VIC, 3168, Australia.
  • Malekipour F; Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, 3010, Australia.
  • Whitton RC; Equine Centre, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, 3030, Victoria, Australia.
  • Lee PV; Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, 3010, Australia. Electronic address: pvlee@unimelb.edu.au.
J Mech Behav Biomed Mater ; 152: 106405, 2024 Apr.
Article em En | MEDLINE | ID: mdl-38271752
ABSTRACT
Most fractures in the third metacarpal bone of equine athletes occur due to repeated cycles of high load magnitudes and are commonly generated during fast-training workouts. These repetitive loads may induce changes in the microstructure and mechanical properties that can develop into subchondral bone (SCB) injuries near the articular surface. In this study, we investigated the fatigue behaviour of local regions in SCB (near the articular surface i.e., 2 mm superficial SCB and the underlying 2 mm deeper SCB) under a simulated fast-training workout of an equine athlete. A fatigue test on SCB specimens was designed to simulate the fast-training workout, which comprised of repeated load cycles with varying load magnitude, representing the varying gait speed during a fast-training workout. The fatigue test was applied three times to each of the five cylindrical SCB specimens harvested from the left and right metacarpal condyles of five thoroughbred racehorses). All specimens completed at least one fatigue test. Three specimens completed all three fatigue tests with no visible cracks identified with Micro-CT scans. The other two specimens failed in the second fatigue test, and cracks were identified with Micro-CT scans in the various local regions. Using Digital Image Correlation (DIC) analysis, we found that in the local regions of all specimens, modulus decreased between load cycles corresponding to 68 and 93 MPa load magnitudes (equivalent to the fastest gallop speed). Wherein specimens that failed exhibited a greater decrease in modulus (in superficial SCB by 45.64 ± 5.66% and in deeper SCB by -36.85 ± 10.47% (n = 2)) than those not failed (in superficial SCB by -7.45 ± 14.62% and in deeper SCB by -5.67 ± 7.32% (n = 3)). This has provided evidence that the loads on SCB at galloping speeds are most likely to produce fatigue damage and that the damage induced is localised. Furthermore, one of the failed specimens exhibited a peak in the tensile strain rather than compressive strain in the superficial region with a rapid decrease in modulus. In addition, the superficial region of all specimens exhibited greater residual tensile strain than that of the deeper region.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ossos Metacarpais / Gastrópodes / Fraturas Ósseas / Treinamento por Simulação Limite: Animals / Humans Idioma: En Revista: J Mech Behav Biomed Mater Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Austrália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ossos Metacarpais / Gastrópodes / Fraturas Ósseas / Treinamento por Simulação Limite: Animals / Humans Idioma: En Revista: J Mech Behav Biomed Mater Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Austrália