Gelatin/polychromatic materials microgels enhanced by carnosic acid inclusions and its application in 2D pattern printing and multi-nozzle food 3D printing.
Int J Biol Macromol
; 261(Pt 1): 129749, 2024 Mar.
Article
em En
| MEDLINE
| ID: mdl-38281522
ABSTRACT
Natural polychromatic biomaterials (like carminic acid and gardenia yellow) possess coloring merits and functionality, but are instable under light and heat. Self-assembly of gelatin and polychromatic materials could be induced by carnosic acid inclusions, illustrating great potential in food application. Antioxidant properties, pigment retention rates, UV irradiation stability, rheological properties, and physical resistances (oil, ethanol, heat and microwave) of samples were improved by carnosic acid inclusions, owing to the newly formed hydrogen bonding and electrostatic interactions (UV spectrum, particle size, zeta potential, FTIR, XPS and SEM). The improved properties contributed to the 2D printed pattern stability and the applicability for producing specialized products with high printability and fastness. On the basis of Subtractive Color-Mixing Principle, further three-dimensional dyeing microgel systems were built and modulated; it could functionalize bean paste/carboxymethyl-cellulose food systems, maintain the excellent self-supporting ability & mechanical strength, and promote single/dual-nozzle 3D printing application. Therefore, the self-assembled gelatin/polychromatic materials/carnosic acid microgel samples could not only achieve outstanding 2D printed pattern stability, and could be also promisingly applied in single/dual-nozzle 3D printing for modern innovative, creative food fields.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Abietanos
/
Microgéis
Idioma:
En
Revista:
Int J Biol Macromol
Ano de publicação:
2024
Tipo de documento:
Article