Your browser doesn't support javascript.
loading
Learning self-supervised molecular representations for drug-drug interaction prediction.
Kpanou, Rogia; Dallaire, Patrick; Rousseau, Elsa; Corbeil, Jacques.
Afiliação
  • Kpanou R; Département d'informatique et Génie Logiciel, Université Laval, Québec City, QC, Canada. sewagnouin-rogia.kpanou.1@ulaval.ca.
  • Dallaire P; Département d'informatique et Génie Logiciel, Université Laval, Québec City, QC, Canada.
  • Rousseau E; Département d'informatique et Génie Logiciel, Université Laval, Québec City, QC, Canada.
  • Corbeil J; Centre de Recherche en Données Massives de l'Université Laval, Québec City, QC, Canada.
BMC Bioinformatics ; 25(1): 47, 2024 Jan 30.
Article em En | MEDLINE | ID: mdl-38291362
ABSTRACT
Drug-drug interactions (DDI) are a critical concern in healthcare due to their potential to cause adverse effects and compromise patient safety. Supervised machine learning models for DDI prediction need to be optimized to learn abstract, transferable features, and generalize to larger chemical spaces, primarily due to the scarcity of high-quality labeled DDI data. Inspired by recent advances in computer vision, we present SMR-DDI, a self-supervised framework that leverages contrastive learning to embed drugs into a scaffold-based feature space. Molecular scaffolds represent the core structural motifs that drive pharmacological activities, making them valuable for learning informative representations. Specifically, we pre-trained SMR-DDI on a large-scale unlabeled molecular dataset. We generated augmented views for each molecule via SMILES enumeration and optimized the embedding process through contrastive loss minimization between views. This enables the model to capture relevant and robust molecular features while reducing noise. We then transfer the learned representations for the downstream prediction of DDI. Experiments show that the new feature space has comparable expressivity to state-of-the-art molecular representations and achieved competitive DDI prediction results while training on less data. Additional investigations also revealed that pre-training on more extensive and diverse unlabeled molecular datasets improved the model's capability to embed molecules more effectively. Our results highlight contrastive learning as a promising approach for DDI prediction that can identify potentially hazardous drug combinations using only structural information.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Canadá

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Canadá