Your browser doesn't support javascript.
loading
Three-Coordinate Nickel and Metal-Metal Interactions in a Heterometallic Iron-Sulfur Cluster.
Wilson, Daniel W N; Fataftah, Majed S; Mathe, Zachary; Mercado, Brandon Q; DeBeer, Serena; Holland, Patrick L.
Afiliação
  • Wilson DWN; Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.
  • Fataftah MS; Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.
  • Mathe Z; Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
  • Mercado BQ; Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.
  • DeBeer S; Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
  • Holland PL; Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.
J Am Chem Soc ; 146(6): 4013-4025, 2024 Feb 14.
Article em En | MEDLINE | ID: mdl-38308743
ABSTRACT
Biological multielectron reactions often are performed by metalloenzymes with heterometallic sites, such as anaerobic carbon monoxide dehydrogenase (CODH), which has a nickel-iron-sulfide cubane with a possible three-coordinate nickel site. Here, we isolate the first synthetic iron-sulfur clusters having a nickel atom with only three donors, showing that this structural feature is feasible. These have a core with two tetrahedral irons, one octahedral tungsten, and a three-coordinate nickel connected by sulfide and thiolate bridges. Electron paramagnetic resonance (EPR), Mössbauer, and superconducting quantum interference device (SQUID) data are combined with density functional theory (DFT) computations to show how the electronic structure of the cluster arises from strong magnetic coupling between the Ni, Fe, and W sites. X-ray absorption spectroscopy, together with spectroscopically validated DFT analysis, suggests that the electronic structure can be described with a formal Ni1+ atom participating in a nonpolar Ni-W σ-bond. This metal-metal bond, which minimizes spin density at Ni1+, is conserved in two cluster oxidation states. Fe-W bonding is found in all clusters, in one case stabilizing a local non-Hund state at tungsten. Based on these results, we compare different M-M interactions and speculate that other heterometallic clusters, including metalloenzyme active sites, could likewise store redox equivalents and stabilize low-valent metal centers through metal-metal bonding.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos