Your browser doesn't support javascript.
loading
C, Ge-doped h-BN quantum dot for nano-optoelectronic applications.
Ngoc, Hoang Van; Ha, Chu Viet.
Afiliação
  • Ngoc HV; Center for Forecasting Study, Institute of Southeast Vietnamese Studies, Thu Dau Mot University, Thu Dau Mot, Binh Duong Province, Vietnam.
  • Ha CV; Thai Nguyen University of Education, Thai Nguyen City, Thai Nguyen Province, Vietnam.
J Phys Condens Matter ; 36(19)2024 Feb 14.
Article em En | MEDLINE | ID: mdl-38316058
ABSTRACT
Emerging materials, particularly nanomaterials, constitute an enduring focal point of scientific inquiry, with quantum dots being of particular interest. This investigation is centered on elucidating the exceptional structural, electromagnetic, and optical characteristics of hexagonal boron nitride (h-BN) quantum dots and h-BN quantum dots doped with carbon (C) and germanium (Ge). The employed methodology in this study hinges on density functional theory coupled with the Vienna Ab initio simulation package. The outcomes of this research unveil the structural stability of hexagonal honeycomb structures upon optimization. Comprehensive examinations encompassing structural properties, electromagnetic characteristics, and charge density variations have been systematically conducted. Furthermore, this work delves into the elucidation of multi-orbital hybridizations that give rise toσbonds andπbonds. Notably, the outcomes of the optical property analysis divulge intriguing observations. Specifically, the absorption coefficient exhibits zero values within select energy ranges within the visible light spectrum, a phenomenon observed in both pristine and C-doped configurations. This discovery underscores the material's optical transparency at these specific radiation energies. Additionally, the 0xand 0ycomponents of the dielectric function display negative values across particular energy ranges, a characteristic that holds significant promise for potential applications in nanotechnology communications, offering minimal energy loss.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Phys Condens Matter Assunto da revista: BIOFISICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Vietnã

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Phys Condens Matter Assunto da revista: BIOFISICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Vietnã