Conspicuous chloroplast with light harvesting-photosystem I/II megacomplex in marine Prorocentrum cordatum.
Plant Physiol
; 195(1): 306-325, 2024 Apr 30.
Article
em En
| MEDLINE
| ID: mdl-38330164
ABSTRACT
Marine photosynthetic (micro)organisms drive multiple biogeochemical cycles and display a large diversity. Among them, the bloom-forming, free-living dinoflagellate Prorocentrum cordatum CCMP 1329 (formerly P. minimum) stands out with its distinct cell biological features. Here, we obtained insights into the structural properties of the chloroplast and the photosynthetic machinery of P. cordatum using microscopic and proteogenomic approaches. High-resolution FIB/SEM analysis revealed a single large chloroplast (â¼40% of total cell volume) with a continuous barrel-like structure, completely lining the inner face of the cell envelope and enclosing a single reticular mitochondrium, the Golgi apparatus, as well as diverse storage inclusions. Enriched thylakoid membrane fractions of P. cordatum were comparatively analyzed with those of the well-studied model-species Arabidopsis (Arabidopsis thaliana) using 2D BN DIGE. Strikingly, P. cordatum possessed a large photosystem-light harvesting megacomplex (>1.5â
MDa), which is dominated by photosystems I and II (PSI, PSII), chloroplast complex I, and chlorophyll a-b binding light harvesting complex proteins. This finding parallels the absence of grana in its chloroplast and distinguishes from the predominant separation of PSI and PSII complexes in A. thaliana, indicating a different mode of flux balancing. Except for the core elements of the ATP synthase and the cytb6f-complex, the composition of the other complexes (PSI, PSII, and pigment-binding proteins, PBPs) of P. cordatum differed markedly from those of A. thaliana. Furthermore, a high number of PBPs was detected, accounting for a large share of the total proteomic data (â¼65%) and potentially providing P. cordatum with flexible adaptation to changing light regimes.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Dinoflagellida
/
Proteínas de Protozoários
/
Cloroplastos
/
Complexo de Proteína do Fotossistema I
/
Complexo de Proteína do Fotossistema II
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
Plant Physiol
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Alemanha