Your browser doesn't support javascript.
loading
Controllable Pyridine N-Oxidation-Nucleophilic Dechlorination Process for Enhanced Dechlorination of Chloropyridines: The Cooperation of HCO4- and HO2.
Chen, Ying; Tian, Lei; Liu, Wen; Mei, Yi; Xing, Qiu-Ju; Mu, Yi; Zheng, Ling-Ling; Fu, Qian; Zou, Jian-Ping; Wu, Daishe.
Afiliação
  • Chen Y; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China.
  • Tian L; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, P. R. China.
  • Liu W; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China.
  • Mei Y; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China.
  • Xing QJ; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China.
  • Mu Y; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China.
  • Zheng LL; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China.
  • Fu Q; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China.
  • Zou JP; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China.
  • Wu D; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China.
Environ Sci Technol ; 58(9): 4438-4449, 2024 Mar 05.
Article em En | MEDLINE | ID: mdl-38330552
ABSTRACT
Dechlorination of chloropyridines can eliminate their detrimental environmental effects. However, traditional dechlorination technology cannot efficiently break the C-Cl bond of chloropyridines, which is restricted by the uncontrollable nonselective species. Hence, we propose the carbonate species-activated hydrogen peroxide (carbonate species/H2O2) process wherein the selective oxidant (peroxymonocarbonate ion, HCO4-) and selective reductant (hydroperoxide anion, HO2-) controllably coexist by manipulation of reaction pH. Taking 2-chloropyridine (Cl-Py) as an example, HCO4- first induces Cl-Py into pyridine N-oxidation intermediates, which then suffer from the nucleophilic dechlorination by HO2-. The obtained dechlorination efficiencies in the carbonate species/H2O2 process (32.5-84.5%) based on the cooperation of HCO4- and HO2- are significantly higher than those in the HO2--mediated sodium hydroxide/hydrogen peroxide process (0-43.8%). Theoretical calculations confirm that pyridine N-oxidation of Cl-Py can effectively lower the energy barrier of the dechlorination process. Moreover, the carbonate species/H2O2 process exhibits superior anti-interference performance and low electric energy consumption. Furthermore, Cl-Py is completely detoxified via the carbonate species/H2O2 process. More importantly, the carbonate species/H2O2 process is applicable for efficient dehalogenation of halogenated pyridines and pyrazines. This work offers a simple and useful strategy to enhance the dehalogenation efficiency of halogenated organics and sheds new insights into the application of the carbonate species/H2O2 process in practical environmental remediation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Piridinas / Peróxido de Hidrogênio Idioma: En Revista: Environ Sci Technol Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Piridinas / Peróxido de Hidrogênio Idioma: En Revista: Environ Sci Technol Ano de publicação: 2024 Tipo de documento: Article