Your browser doesn't support javascript.
loading
Biofilm rigidity, mechanics and composition in seawater desalination pretreatment employing ultrafiltration and microfiltration membranes.
Ranieri, Luigi; Esposito, Rebecca; Nunes, Suzana P; Vrouwenvelder, Johannes S; Fortunato, Luca.
Afiliação
  • Ranieri L; Environmental Science & Engineering Program (EnSE), Biological and Environmental Science & Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Water Desalination and Reuse Center (WDRC), King Abdullah University of Science
  • Esposito R; Environmental Science & Engineering Program (EnSE), Biological and Environmental Science & Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Advanced Membranes and Porous Materials (AMPM) Center, King Abdullah University
  • Nunes SP; Environmental Science & Engineering Program (EnSE), Biological and Environmental Science & Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Chemistry Program and Chemical Engineering Program, Physical Science and Engine
  • Vrouwenvelder JS; Environmental Science & Engineering Program (EnSE), Biological and Environmental Science & Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Water Desalination and Reuse Center (WDRC), King Abdullah University of Science
  • Fortunato L; Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; MANN+HUMMEL Water & Fluid Solutions S.p.A., Italy. Electronic address: luca.fortunato@kaust.edu.sa.
Water Res ; 253: 121282, 2024 Apr 01.
Article em En | MEDLINE | ID: mdl-38341976
ABSTRACT
The choice of appropriate biofilm control strategies in membrane systems for seawater desalination pretreatment relies on understanding the properties of the biofilm formed on the membrane. This study reveals how the biofilm composition, including both organic and inorganic, influenced the biofilm behavior under mechanical loading. The investigation was conducted on two Gravity-Driven Membrane reactors employing Microfiltration (MF) and Ultrafiltration (UF) membrane for the pretreatment of raw seawater. After a stabilization period of 20 days (Phase I), a biofilm behavior test was introduced (Phase II) to evaluate (i) biofilm deformation during the absence of permeation (i.e., relaxation) and (ii) biofilm resistance to detachment forces (i.e., air scouring). The in-situ monitoring investigation using Optical Coherence Tomography (OCT) revealed that the biofilms developed on MF and UF membrane presented a rigid structure in absence of filtration forces, limiting the application of relaxation and biofilm expansion necessary for cleaning. Moreover, under shear stress conditions, a higher reduction in biofilm thickness was observed for MF (-60%, from 84 to 34 µm) compared to UF (-30%, from 64 to 45 µm), leading to an increase of permeate flux (+60%, from 9.1 to 14.9 L/m2/h and +20 % from 7.8 to 9.5 L/m2/h, respectively). The rheometric analysis indicated that the biofilm developed on MF membrane had weaker mechanical strength, displaying lower storage modulus (-50 %) and lower loss modulus (-55 %) compared to UF. These differences in mechanical properties were linked to the lower concentration of polyvalent ions and the distribution of organic foulants (i.e., BB, LMW-N) found in the biofilm on the MF membrane. Moreover, in the presence of air scouring led to a slight difference in microbial community between UF and MF. Our findings provide valuable insight for future investigations aimed at engineer biofilm composition to optimize biofilm control strategies in membrane systems for seawater desalination pretreatment.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ultrafiltração / Purificação da Água Idioma: En Revista: Water Res Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ultrafiltração / Purificação da Água Idioma: En Revista: Water Res Ano de publicação: 2024 Tipo de documento: Article