Your browser doesn't support javascript.
loading
Building an ab initio solvated DNA model using Euclidean neural networks.
Lee, Alex J; Rackers, Joshua A; Pathak, Shivesh; Bricker, William P.
Afiliação
  • Lee AJ; Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, United States of America.
  • Rackers JA; Center for Computing Research, Sandia National Laboratories, Albuquerque, NM, United States of America.
  • Pathak S; Center for Computing Research, Sandia National Laboratories, Albuquerque, NM, United States of America.
  • Bricker WP; Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, United States of America.
PLoS One ; 19(2): e0297502, 2024.
Article em En | MEDLINE | ID: mdl-38358990
ABSTRACT
Accurately modeling large biomolecules such as DNA from first principles is fundamentally challenging due to the steep computational scaling of ab initio quantum chemistry methods. This limitation becomes even more prominent when modeling biomolecules in solution due to the need to include large numbers of solvent molecules. We present a machine-learned electron density model based on a Euclidean neural network framework that includes a built-in understanding of equivariance to model explicitly solvated double-stranded DNA. By training the machine learning model using molecular fragments that sample the key DNA and solvent interactions, we show that the model predicts electron densities of arbitrary systems of solvated DNA accurately, resolves polarization effects that are neglected by classical force fields, and captures the physics of the DNA-solvent interaction at the ab initio level.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA / Redes Neurais de Computação Tipo de estudo: Prognostic_studies Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA / Redes Neurais de Computação Tipo de estudo: Prognostic_studies Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos