Your browser doesn't support javascript.
loading
Tensor denoising of quantitative multi-parameter mapping.
Herthum, Helge; Hetzer, Stefan.
Afiliação
  • Herthum H; Berlin Center for Advanced Neuroimaging, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
  • Hetzer S; Bernstein Center for Computational Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
Magn Reson Med ; 92(1): 145-157, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38368616
ABSTRACT

PURPOSE:

Quantitative multi-parameter mapping (MPM) provides maps of physical quantities representing physiologically meaningful tissue characteristics, which allows to investigate microstructure-function relationships reflecting normal or pathologic processes in the brain. However, the achievable spatial resolution and stability of MPM for basic research or clinical applications is severely constrained by SNR limits of the MR acquisition process, resulting in relatively long acquisition times. To increase SNR, we denoise MPM acquisitions using principal component analysis along tensors exploiting the Marchenko-Pastur law (tMPPCA).

METHODS:

tMPPCA denoising was applied to three sets of MPM raw data before the quantification of maps of proton density, magnetization transfer saturation, R1, and R2*. The regional SNR gain for high-resolution MPM was investigated as well as reproducibility gains for clinically optimized protocols with moderate and high acceleration factors at different image resolutions.

RESULTS:

Substantial noise reduction in raw data was achieved, resulting in reduced noise for quantitative mapping up to sixfold without introducing bias of mean values (below 1%). Scan-rescan fluctuations were reduced up to threefold. Denoising allowed to decrease the voxel volume fourfold at the same scan time or reduce the scan time twofold at same voxel volume without loss of sensitivity.

CONCLUSIONS:

tMPPCA denoising can (a) improve of fine spatial and temporal patterns, (b) considerably reduce scan time for clinical applications, or (c) increase resolution to potentially push cutting-edge MPM protocols from the upper to the lower limit of the mesoscopic scale.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Processamento de Imagem Assistida por Computador / Encéfalo / Imageamento por Ressonância Magnética / Razão Sinal-Ruído Limite: Adult / Female / Humans / Male Idioma: En Revista: Magn Reson Med Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Processamento de Imagem Assistida por Computador / Encéfalo / Imageamento por Ressonância Magnética / Razão Sinal-Ruído Limite: Adult / Female / Humans / Male Idioma: En Revista: Magn Reson Med Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha