Your browser doesn't support javascript.
loading
Ligand-induced incompatible curvatures control ultrathin nanoplatelet polymorphism and chirality.
Monego, Debora; Dutta, Sarit; Grossman, Doron; Krapez, Marion; Bauer, Pierre; Hubley, Austin; Margueritat, Jérémie; Mahler, Benoit; Widmer-Cooper, Asaph; Abécassis, Benjamin.
Afiliação
  • Monego D; School of Chemistry, Australian Research Council (ARC) Centre of Excellence in Exciton Science, University of Sydney, Sydney, NSW 2006, Australia.
  • Dutta S; The University of Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia.
  • Grossman D; ENSL, CNRS, Laboratoire de Chimie, UMR 5182, 46 allée d'Italie, Lyon F-69364, France.
  • Krapez M; Laboratoire d'hydrodynamique (LadHyX), UMR, École Polytechnique, CNRS, Palaiseau F-91128, France.
  • Bauer P; School of Chemistry, Australian Research Council (ARC) Centre of Excellence in Exciton Science, University of Sydney, Sydney, NSW 2006, Australia.
  • Hubley A; The University of Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia.
  • Margueritat J; Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne F-69622, France.
  • Mahler B; ENSL, CNRS, Laboratoire de Chimie, UMR 5182, 46 allée d'Italie, Lyon F-69364, France.
  • Widmer-Cooper A; Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne F-69622, France.
  • Abécassis B; Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne F-69622, France.
Proc Natl Acad Sci U S A ; 121(9): e2316299121, 2024 Feb 27.
Article em En | MEDLINE | ID: mdl-38381786
ABSTRACT
The ability of thin materials to shape-shift is a common occurrence that leads to dynamic pattern formation and function in natural and man-made structures. However, harnessing this concept to rationally design inorganic structures at the nanoscale has remained far from reach due to a lack of fundamental understanding of the essential physical components. Here, we show that the interaction between organic ligands and the nanocrystal surface is responsible for the full range of chiral shapes seen in colloidal nanoplatelets. The adsorption of ligands results in incompatible curvatures on the top and bottom surfaces of the NPL, causing them to deform into helicoïds, helical ribbons, or tubes depending on the lateral dimensions and crystallographic orientation of the NPL. We demonstrate that nanoplatelets belong to the broad class of geometrically frustrated assemblies and exhibit one of their hallmark features a transition between helicoïds and helical ribbons at a critical width. The effective curvature [Formula see text] is the single aggregate parameter that encodes the details of the ligand/surface interaction, determining the nanoplatelets' geometry for a given width and crystallographic orientation. The conceptual framework described here will aid the rational design of dynamic, chiral nanostructures with high fundamental and practical relevance.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Austrália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Austrália