Your browser doesn't support javascript.
loading
Construction of catalase@hollow silica nanosphere: Catalase with immobilized but not rigid state for improving catalytic performances.
Du, Yingjie; Zhao, Lixue; Geng, Zixin; Huo, Zibei; Li, Huihui; Shen, Xuejian; Peng, Xiaogang; Yan, Renyi; Cui, Jiandong; Jia, Shiru.
Afiliação
  • Du Y; State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, China; S
  • Zhao L; State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, China.
  • Geng Z; State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, China.
  • Huo Z; State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, China.
  • Li H; State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, China.
  • Shen X; State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, China.
  • Peng X; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, China.
  • Yan R; Tianjin UBasio Biotechnology Group, China.
  • Cui J; State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, China. E
  • Jia S; State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, China.
Int J Biol Macromol ; 263(Pt 2): 130381, 2024 Apr.
Article em En | MEDLINE | ID: mdl-38395291
ABSTRACT
Enzyme immobilization usually make use of nanomaterials to hold up biocatalysis stability in various unamiable reaction conditions, but also lead large discount on enzyme activity. Thus, there are abundant researches focus on how to deal with the relation of enzyme molecules and supports. In this work, a new state of highly active enzymes has been established through facile and novel in situ immobilization and soft template removal method to construct enzyme contained hollow silica nanosphere (catalase@HSN) biocatalysts where enzymes in the cavity exhibit "immobilized but not rigid state". The obtained catalase@HSN was characterized by transmission electron microscopy, scanning electron microscopy and confocal laser scanning microscopy et al. Catalase@HSN exhibits excellent activity (about 80 % activity recovery rate) and stability suffers from extreme pH, temperature, and organic solvents. Moreover, the reusability and storage stability of catalase@HSN also are satisfactory. This proposed strategy provides a facile method for preparing biocatalysts under mild conditions, facilitating the applications of immobilized enzyme in the fields of real biocatalytic industry with high apparent activity and passable stability.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dióxido de Silício / Nanosferas Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dióxido de Silício / Nanosferas Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2024 Tipo de documento: Article