Your browser doesn't support javascript.
loading
Enhanced humification via lignocellulosic pretreatment in remediation of agricultural solid waste.
Ma, Jianxun; Ma, Nyuk Ling; Fei, Shuang; Liu, Guoqing; Wang, Yufan; Su, Yuchun; Wang, Xuefeng; Wang, Jihong; Xie, Zhiming; Chen, Guang; Sun, Yang; Sun, Chunyu.
Afiliação
  • Ma J; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun, 130118, China; Innovation platform of straw comprehensive utilization technology in Jilin Province, Changchun, 130118, China.
  • Ma NL; BIOSES Research Interest Group, Faculty of Science & Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
  • Fei S; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun, 130118, China; Innovation platform of straw comprehensive utilization technology in Jilin Province, Changchun, 130118, China.
  • Liu G; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun, 130118, China; Innovation platform of straw comprehensive utilization technology in Jilin Province, Changchun, 130118, China.
  • Wang Y; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun, 130118, China; Innovation platform of straw comprehensive utilization technology in Jilin Province, Changchun, 130118, China.
  • Su Y; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun, 130118, China; Innovation platform of straw comprehensive utilization technology in Jilin Province, Changchun, 130118, China.
  • Wang X; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun, 130118, China; Innovation platform of straw comprehensive utilization technology in Jilin Province, Changchun, 130118, China.
  • Wang J; College of resources and environment, Jilin Agricultural University, Changchun, 130118, China.
  • Xie Z; College of Life Sciences, Baicheng Normal University, Baicheng, 137000, China.
  • Chen G; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun, 130118, China; Innovation platform of straw comprehensive utilization technology in Jilin Province, Changchun, 130118, China.
  • Sun Y; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun, 130118, China; Innovation platform of straw comprehensive utilization technology in Jilin Province, Changchun, 130118, China.
  • Sun C; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun, 130118, China; Innovation platform of straw comprehensive utilization technology in Jilin Province, Changchun, 130118, China. Elect
Environ Pollut ; 346: 123646, 2024 Apr 01.
Article em En | MEDLINE | ID: mdl-38402938
ABSTRACT
Stover and manure are the main solid waste in agricultural industry. The generation of stover and manure could lead to serious environmental pollution if not handled properly. Composting is the potential greener solution to remediate and reduce agricultural solid waste, through which stover and manure could be remediated and converted into organic fertilizer, but the long composting period and low efficiency of humic substance production are the key constraints in such remediation approach. In this study, we explore the effect of lignocellulose selective removal on composting by performing chemical pretreatment on agricultural waste followed by utilization of biochar to assist in the remediation by co-composting treatment and reveal the impacts of different lignocellulose component on organic fertilizer production. Aiming to discover the key factors that influence humification during composting process and improve the composting quality as well as comprehensive utilization of agricultural solid waste. The results demonstrated that the removal of selective lignin or hemicellulose led to the shift of abundances lignocellulose-degrading bacteria, which in turn accelerated the degradation of lignocellulose by almost 51.2%. The process also facilitated the remediation of organic waste via humification and increased the humic acid level and HA/FA ratio in just 22 days. The richness of media relies on their lignocellulose content, which is negatively correlated with total nitrogen content, humic acid (HA) content, germination index (GI), and pH, but positively correlated with fulvic acid (FA) and total organic carbon (TOC). The work provides a potential cost effective and efficient framework for agricultural solid waste remediation and reduction.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Solo / Substâncias Húmicas Idioma: En Revista: Environ Pollut Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Solo / Substâncias Húmicas Idioma: En Revista: Environ Pollut Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China