Your browser doesn't support javascript.
loading
Humic acid-mediated transport of a typical soil passivation remediation product (chloropyromorphite) in saturated porous media.
Li, Xinying; Zhang, Mengjia; Li, Siyuan; Wei, Wei.
Afiliação
  • Li X; School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geograph
  • Zhang M; School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China.
  • Li S; School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China.
  • Wei W; School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geograph
J Environ Sci (China) ; 141: 51-62, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38408834
ABSTRACT
Conversion of labile Pb species into chloropyromorphite (CPY) using phosphorus-bearing amendments was considered to be an ideal strategy in soil passivation remediation. However, the fate and transport of CPY in the soil are poorly understood. This study aims to fill the knowledge gap by evaluating the fate and transport of CPY under environmentally relevant conditions of humic acid (HA), pH, electrolyte concentration, and species through the saturated sandy medium. Results showed that bare CPY colloids are basically immobile in sandy porous media while the co-existence of HA made the transport of CPY improved by 30%-93.5%. Facilitated transport of CPY was attributed to the increased stability of CPY and the repulsive interaction between CPY particles and sands due to HA adsorption. The mobility of CPY was also increased with increasing pH from 5.0 to 9.0. When the pH was 9 with a 10 mmol/L NaCl background solution, the stronger energy barrier between CPY and sand led to enhanced transport behavior. The divalent Ca2+ had a more dramatic effect than monovalent Na+ on the aggregation and sedimentation of CPY colloids due to its effectivescreening of the surface charge of CPY and bridging interaction with CPY particles. Derjaguin-Landau-Verwey-Overbeek theory and attachment efficiency calculation indicated that high energy barriers were responsible for the high mobility of CPY colloids, while the retention of CPY in sands was mainly caused by secondary energy minimum and physically straining. The findings of this work can help to evaluate the fate of soil passivation remediation products in natural water and soil.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fosfatos / Solo / Substâncias Húmicas / Minerais Idioma: En Revista: J Environ Sci (China) Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fosfatos / Solo / Substâncias Húmicas / Minerais Idioma: En Revista: J Environ Sci (China) Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2024 Tipo de documento: Article