Your browser doesn't support javascript.
loading
Diannexin alleviates myocardial ischemia-reperfusion injury by orchestrating cardiomyocyte oxidative damage, macrophage polarization and fibrotic process by TLR4-NF-kB-mediated inactivation of NLRP3 inflammasome.
Zhang, Lin; Zhao, Songlin; Wang, Yaqi.
Afiliação
  • Zhang L; Department of Clinical Laboratory Medicine, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. Electronic address: lz22701_011@vip.163.com.
  • Zhao S; Department of Clinical Laboratory Medicine, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
  • Wang Y; Department of Clinical Laboratory Medicine, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
Int Immunopharmacol ; 130: 111668, 2024 Mar 30.
Article em En | MEDLINE | ID: mdl-38417368
ABSTRACT
Myocardial ischemia-reperfusion (I/R) injury is a pathogenic mechanism of myocardial infarction and heart failure, constituting a major health concern globally. Diannexin is a homodimer of recombinant human annexin V and elicits important roles in several I/R injuries. Nevertheless, its function in MI/R remains elusive. Here, Diannexin alleviated simulated I/R (SI/R)-induced cardiomyocyte death and oxidative injury by increasing cell viability and inhibiting cell apoptosis, ROS, lactate dehydrogenase, malondialdehyde production and anti-oxidative SOD activity. Diannexin inhibited SI/R-induced expression of fibrotic protein collagen I and collagen III. Furthermore, Diannexin suppressed LPS-induced macrophage polarization towards pro-inflammatory M1-like phenotype and enhanced IL-4-evoked anti-inflammatory M2 polarization. Concomitantly, Diannexin inhibited SI/R exposure-induced macrophage polarization to M1 subtypes. Importantly, conditioned medium (CM) from SI/R-stimulated macrophages evoked cardiomyocyte apoptosis, which was reversed when cells were co-cultured with CM from Diannexin-treated macrophages under SI/R conditions. Mechanically, the activation of TLR4/NF-κB/NLRP3 inflammasome signaling in SI/R-treated cells was mitigated by Diannexin. Reactivating this pathway antagonized the protective effects of Diannexin on SI/R-induced cardiomyocyte oxidative injury, fibrotic protein expression and macrophage polarization and M1 macrophage-induced apoptosis of cardiomyocytes. In vivo, Diannexin alleviated abnormal cardiac structure, dysfunction and collagen position in MI/R mice. Additionally, Diannexin reduced M1-polarized and elevated M2-polarized macrophages in heart tissues at five days post-MI/R. The activation of TLR4/NF-κB/NLRP3 inflammasome pathway in MI/R mice was attenuated after Diannexin administration. Together, Diannexin may alleviate the development of MI/R injury by directly regulating cardiomyocyte oxidative injury, fibrotic potential and indirectly affecting macrophage polarization-mediated cardiomyocyte apoptosis, indicating a promising therapeutic strategy for MI/R.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Traumatismo por Reperfusão Miocárdica / Infarto do Miocárdio Limite: Animals / Humans Idioma: En Revista: Int Immunopharmacol Assunto da revista: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Traumatismo por Reperfusão Miocárdica / Infarto do Miocárdio Limite: Animals / Humans Idioma: En Revista: Int Immunopharmacol Assunto da revista: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Ano de publicação: 2024 Tipo de documento: Article