A bipolar organic molecule towards the anion/cation-hosting cathode compatible with polymer electrolytes for quasi-solid-state dual-ion batteries.
J Colloid Interface Sci
; 663: 656-664, 2024 Jun.
Article
em En
| MEDLINE
| ID: mdl-38430835
ABSTRACT
Ion concentration and mobility are tightly associated with the ionic conductance of polymer electrolytes in solid-state lithium batteries. However, the anions involved in the movement are irrelevant to energy generation and cause uncontrolled dendritic growth and concentration polarization. In the current study, we proposed the strategy of using a bipolar organic molecule as the anion/cation-hosting cathode to expand the active charge carriers of polymer electrolytes. As a proof-of-concept demonstration of the novel strategy, a bipolar phthalocyanine derivative (2,3,9,10,16,17,23,24-octamethoxyphthalocyaninato) Ni(II) (NiPc-(OH)8) that could successively store anions and cations was used as the cathode hosting material in quasi-solid-state dual-ion batteries (QSSDIBs). Interestingly, peripheral polyhydroxyl substituents could build a compatible interface with poly(vinylidene fluoride-hexafluoro propylene-based gel polymer electrolytes (PVDF-HFP). As expected, NiPc-(OH)8 displays a high specific capacity of 248.2 mAh/g (at 50 mA g-1) and improved cyclic stability compared with that in liquid electrolyte. This study provides a solution to the issue of anion migration and could open another way to build high-performance QSSDIBs.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
J Colloid Interface Sci
Ano de publicação:
2024
Tipo de documento:
Article