Your browser doesn't support javascript.
loading
Sneaky tactics: Ingenious immune evasion mechanisms of Bartonella.
Xi, Yixuan; Li, Xinru; Liu, Lu; Xiu, Feichen; Yi, Xinchao; Chen, Hongliang; You, Xiaoxing.
Afiliação
  • Xi Y; Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, ChenZhou, Hengyang, China.
  • Li X; Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, ChenZhou, Hengyang, China.
  • Liu L; Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, ChenZhou, Hengyang, China.
  • Xiu F; Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, ChenZhou, Hengyang, China.
  • Yi X; Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, ChenZhou, Hengyang, China.
  • Chen H; Chenzhou NO.1 People's Hospital, The Affiliated Chenzhou Hospital, Hengyang Medical College, University of South China, ChenZhou, China.
  • You X; Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, ChenZhou, Hengyang, China.
Virulence ; 15(1): 2322961, 2024 12.
Article em En | MEDLINE | ID: mdl-38443331
ABSTRACT
Gram-negative Bartonella species are facultative intracellular bacteria that can survive in the harsh intracellular milieu of host cells. They have evolved strategies to evade detection and degradation by the host immune system, which ensures their proliferation in the host. Following infection, Bartonella alters the initial immunogenic surface-exposed proteins to evade immune recognition via antigen or phase variation. The diverse lipopolysaccharide structures of certain Bartonella species allow them to escape recognition by the host pattern recognition receptors. Additionally, the survival of mature erythrocytes and their resistance to lysosomal fusion further complicate the immune clearance of this species. Certain Bartonella species also evade immune attacks by producing biofilms and anti-inflammatory cytokines and decreasing endothelial cell apoptosis. Overall, these factors create a challenging landscape for the host immune system to rapidly and effectively eradicate the Bartonella species, thereby facilitating the persistence of Bartonella infections and creating a substantial obstacle for therapeutic interventions. This review focuses on the effects of three human-specific Bartonella species, particularly their mechanisms of host invasion and immune escape, to gain new perspectives in the development of effective diagnostic tools, prophylactic measures, and treatment options for Bartonella infections.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bartonella / Infecções por Bartonella Limite: Humans Idioma: En Revista: Virulence Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bartonella / Infecções por Bartonella Limite: Humans Idioma: En Revista: Virulence Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China