Your browser doesn't support javascript.
loading
MiR-375 impairs breast cancer cell stemness by targeting the KLF5/G6PD signaling axis.
Chen, Haitao; Hou, Shanshan; Zhang, Hongwei; Zhou, Bing; Xi, Huifang; Li, Xiaofang; Lufeng, Zheng; Guo, Qianqian.
Afiliação
  • Chen H; School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
  • Hou S; Department of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, People's Republic of China.
  • Zhang H; Department of Anesthesiology, Hepatobiliary Surgery, Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Wei Hui, China.
  • Zhou B; Department of Anesthesiology, Hepatobiliary Surgery, Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Wei Hui, China.
  • Xi H; Department of Anesthesiology, Hepatobiliary Surgery, Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Wei Hui, China.
  • Li X; Department of Anesthesiology, Hepatobiliary Surgery, Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Wei Hui, China.
  • Lufeng Z; School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
  • Guo Q; Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, People's Republic of China.
Environ Toxicol ; 2024 Mar 12.
Article em En | MEDLINE | ID: mdl-38470012
ABSTRACT
Recurrence of breast cancer may be due to the presence of breast cancer stem cells (BCSC). Abnormal tumor cell growth is closely associated with increased reactive oxygen species (ROS) and disruption of redox homeostasis, and BCSCs exhibit low levels of ROS. The detailed mechanism between the low levels of ROS in BCSCs and their maintenance of stemness characteristics has not been reported. A growing number of studies have shown that tumor development is often accompanied by metabolic reprogramming, which is an important hallmark of tumor cells. As the first rate-limiting enzyme of pentose phosphate pathway (PPP), the expression of G6PD is precisely regulated in tumor cells, and there is a certain correlation between PPP and BCSCs. MiR-375 has been shown to inhibit stem cell-like properties in breast cancer, but the exact mechanism is not clear. Here, KLF5, as a transcription factor, was identified to bind to the promoter of G6PD to promote its expression, whereas miR-375 inhibited the expression of KLF5 by binding to the 3'UTR region of KLF5 mRNA and thus reduced the expression of G6PD expression, inhibits PPP to reduce NADPH, and increases ROS levels in breast cancer cells, thereby weakening breast cancer cell stemness. Our study reveals the specific mechanism by which miR-375 targets the KLF5/G6PD signaling axis to diminish the stemness of breast cancer cells, providing a therapeutic strategy against BCSCs.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Environ Toxicol Assunto da revista: SAUDE AMBIENTAL / TOXICOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Environ Toxicol Assunto da revista: SAUDE AMBIENTAL / TOXICOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China