Your browser doesn't support javascript.
loading
Designing Biomimetic 3D-Printed Osteochondral Scaffolds for Enhanced Load-Bearing Capacity.
Choe, Robert H; Kuzemchak, Blake C; Kotsanos, George J; Mirdamadi, Eman; Sherry, Mary; Devoy, Eoin; Lowe, Tao; Packer, Jonathan D; Fisher, John P.
Afiliação
  • Choe RH; Fischell Department of Bioengineering, University of Maryland, College Park, College Park, Maryland, USA.
  • Kuzemchak BC; Fischell Department of Bioengineering, Center for Engineering Complex Tissues, University of Maryland, College Park, College Park, Maryland, USA.
  • Kotsanos GJ; Fischell Department of Bioengineering, University of Maryland, College Park, College Park, Maryland, USA.
  • Mirdamadi E; Fischell Department of Bioengineering, Center for Engineering Complex Tissues, University of Maryland, College Park, College Park, Maryland, USA.
  • Sherry M; Fischell Department of Bioengineering, University of Maryland, College Park, College Park, Maryland, USA.
  • Devoy E; Fischell Department of Bioengineering, Center for Engineering Complex Tissues, University of Maryland, College Park, College Park, Maryland, USA.
  • Lowe T; Fischell Department of Bioengineering, University of Maryland, College Park, College Park, Maryland, USA.
  • Packer JD; Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, Maryland, USA.
  • Fisher JP; Fischell Department of Bioengineering, University of Maryland, College Park, College Park, Maryland, USA.
Tissue Eng Part A ; 30(13-14): 409-420, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38481121
ABSTRACT
Osteoarthritis is a debilitating chronic joint disorder that affects millions of people worldwide. Since palliative and surgical treatments cannot completely regenerate hyaline cartilage within the articulating joint, osteochondral (OC) tissue engineering has been explored to heal OC defects. Utilizing computational simulations and three-dimensional (3D) printing, we aimed to build rationale around fabricating OC scaffolds with enhanced biomechanics. First, computational simulations revealed that interfacial fibrils within a bilayer alter OC scaffold deformation patterns by redirecting load-induced stresses toward the top of the cartilage layer. Principal component analysis revealed that scaffolds with 800 µm long fibrils (scaffolds 8A-8H) possessed optimal biomechanical properties to withstand compression and shear forces. While compression testing indicated that OC scaffolds with 800 µm fibrils did not have greater compressive moduli than other scaffolds, interfacial shear tests indicated that scaffold 8H possessed the greatest shear strength. Lastly, failure analysis demonstrated that yielding or buckling models describe interfacial fibril failure depending on fibril slenderness S. Specifically for scaffolds with packing density n = 6 and n = 8, the yielding failure model fits experimental loads with S < 10, while the buckling model fitted scaffolds with S < 10 slenderness. The research presented provides critical insights into designing 3D printed interfacial scaffolds with refined biomechanics toward improving OC tissue engineering outcomes.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Suporte de Carga / Alicerces Teciduais / Impressão Tridimensional Limite: Animals / Humans Idioma: En Revista: Tissue Eng Part A Assunto da revista: BIOTECNOLOGIA / HISTOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Suporte de Carga / Alicerces Teciduais / Impressão Tridimensional Limite: Animals / Humans Idioma: En Revista: Tissue Eng Part A Assunto da revista: BIOTECNOLOGIA / HISTOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos