Your browser doesn't support javascript.
loading
Zeta Potential and Size Analysis of Zeolitic Imidazolate Framework-8 Nanocrystals Prepared by Surfactant-Assisted Synthesis.
Jongert, Tristan K; Slowinski, Ian A; Dao, Benjamin; Cortez, Victor H; Gredig, Thomas; Plascencia, Nestor D; Tian, Fangyuan.
Afiliação
  • Jongert TK; Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, California 90840, United States.
  • Slowinski IA; Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, California 90840, United States.
  • Dao B; Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, California 90840, United States.
  • Cortez VH; Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, California 90840, United States.
  • Gredig T; Department of Physics & Astronomy, California State University Long Beach, Long Beach, California 90840, United States.
  • Plascencia ND; Department of Physics & Astronomy, California State University Long Beach, Long Beach, California 90840, United States.
  • Tian F; Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, California 90840, United States.
Langmuir ; 40(12): 6138-6148, 2024 Mar 26.
Article em En | MEDLINE | ID: mdl-38488140
ABSTRACT
The crystal nucleation and growth mechanism of monodispersed metal-organic framework nanoparticles were studied using time-resolved light dynamic, electrokinetic, and powder X-ray diffraction methods. We confirmed that zeolitic imidazolate framework-8 (ZIF-8) nanocrystals follow a nonclassical crystal growth pathway, where a fast nucleation occurs with dense liquid clusters or nanocrystals forming spontaneously when two precursors are mixed. We also explored the zeta potential and solvodynamic size changes of ZIF-8 prepared by a surfactant-assisted synthesis. Three modulators, including 1-methylimidazole (1-mIm), tris(hydroxymethyl)aminomethane (THAM), and (1-hexadecyl)trimethylammonium bromide (CTAB), were studied. We found that 1-mIm dramatically increases the rate of nucleation of ZIF-8. With an increasing amount of 1-mIm, which functions as a coordination modulator, the size increases, and the zeta potential of ZIF-8 decreases. Whereas THAM, as both a coordination and a deprotonation modulator, increases the size and zeta potential of ZIF-8 simultaneously, CTAB, as a long alkyl cationic surfactant, mainly adsorbs on the surface of ZIF-8, and the zeta potential of the formed ZIF-8 is controlled by the amount of CTAB in solution compared with its critical micelle concentration. Overall, we reveal that the modulator type and concentration can be used to control the size and zeta potential of the dispersed ZIF-8 nanocrystals in a colloid system. The experiments also enable identification of the nucleation and crystal growth processes of ZIF-8. The findings will be applicable to other nanocrystals in colloid systems, which are used for heterogeneous catalysis and guest molecular loadings.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Langmuir Assunto da revista: QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Langmuir Assunto da revista: QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos