Your browser doesn't support javascript.
loading
Strain-induced excellent photocatalytic performance in Z-scheme BlueP/γ-SnS heterostructures for water splitting.
Li, Quan; Wang, Jiabao; Huang, Hao; Zhao, Guangting; Wang, Ling-Ling; Zhu, Xiaojun.
Afiliação
  • Li Q; School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China.
  • Wang J; School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China.
  • Huang H; School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China.
  • Zhao G; School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China.
  • Wang LL; School of Physics and Electronics, Hunan University, Changsha 410082, China.
  • Zhu X; School of Software Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China. zhuxiaojun@jxust.edu.cn.
Phys Chem Chem Phys ; 26(13): 10289-10300, 2024 Mar 27.
Article em En | MEDLINE | ID: mdl-38497927
ABSTRACT
Constructing Z-scheme heterojunction photocatalysts with high solar-to-hydrogen (STH) efficiency is a practical alternative to produce clean and recyclable hydrogen energy on a large scale. This paper presents the design of stable Z-scheme blue phosphorene (BlueP)/γ-SnS heterostructures with excellent photocatalytic activities by applying strains. The first-principles calculations show that the BlueP/γ-SnS heterobilayer is a type-I heterojunction with an indirect bandgap of 1.41 eV and strong visible-light absorption up to 105 cm-1. Interestingly, biaxial strains (ε) can effectively regulate its bandgap width (semiconductor-metal) and induce the band alignment transition (type-I-type-II). Compressive and tensile strains can significantly enhance the interfacial interaction and visible-light absorption, respectively. More intriguingly, compressive strains can not only modulate the heterojunction types but also make the band edges meet the requirements for overall water splitting. In particular, the Z-scheme (type-I) BlueP/γ-SnS bilayer at -8% (-2%) strain exhibits a relatively high STH efficiency of 18% (17%), and the strained Z-scheme system (-8% ≤ ε ≤ -6%) also exhibits high and anisotropic carrier mobilities (158-2327 cm2 V-1 s-1). These strain-induced outstanding properties make BlueP/γ-SnS heterostructures promising candidates for constructing economically feasible photocatalysts and flexible nanodevices.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: PCCP. Phys. chem. chem. phys. (Print) / PCCP. Physical chemistry chemical physics (Print) / Phys Chem Chem Phys Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: PCCP. Phys. chem. chem. phys. (Print) / PCCP. Physical chemistry chemical physics (Print) / Phys Chem Chem Phys Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China