Your browser doesn't support javascript.
loading
Achieving Strong Circularly Polarized Luminescence through Cascade Cationic Insertion in Lead-free Hybrid Metal Halides.
Song, Tao; Wang, Cheng-Qiang; Lu, Haolin; Mu, Xi-Jiao; Wang, Bo-Long; Liu, Ji-Zhong; Ma, Bo; Cao, Jing; Sheng, Chuan-Xiang; Long, Guankui; Wang, Qiang; Zhang, Hao-Li.
Afiliação
  • Song T; Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University,
  • Wang CQ; Key Laboratory of Photovoltaic Science and Technology, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200433, China.
  • Lu H; Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
  • Mu XJ; Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University,
  • Wang BL; Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University,
  • Liu JZ; Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University,
  • Ma B; Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University,
  • Cao J; Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University,
  • Sheng CX; Key Laboratory of Photovoltaic Science and Technology, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200433, China.
  • Long G; Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
  • Wang Q; Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University,
  • Zhang HL; Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University,
Angew Chem Int Ed Engl ; 63(21): e202400769, 2024 May 21.
Article em En | MEDLINE | ID: mdl-38544401
ABSTRACT
Generating circularly polarized luminescence (CPL) with simultaneous high photoluminescence quantum yield (PLQY) and dissymmetry factor (glum) is difficult due to usually unmatched electric transition dipole moment (µ) and magnetic transition dipole moment (m) of materials. Herein we tackle this issue by playing a "cascade cationic insertion" trick to achieve strong CPL (with PLQY of ~100 %) in lead-free metal halides with high glum values reaching -2.3×10-2 without using any chiral inducers. Achiral solvents of hydrochloric acid (HCl) and N, N-dimethylformamide (DMF) infiltrate the crystal lattice via asymmetric hydrogen bonding, distorting the perovskite structure to induce the "intrinsic" chirality. Surprisingly, additional insertion of Cs+ cation to substitute partial (CH3)2NH2 + transforms the chiral space group to achiral but the crystal maintains chiroptical activity. Further doping of Sb3+ stimulates strong photoluminescence as a result of self-trapped excitons (STEs) formation without disturbing the crystal framework. The chiral perovskites of indium-antimony chlorides embedded on LEDs chips demonstrate promising potential as CPL emitters. Our work presents rare cases of chiroptical activity of highly luminescent perovskites from only achiral building blocks via spontaneous resolution as a result of symmetry breaking.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article