Your browser doesn't support javascript.
loading
Deep-Learning for Rapid Estimation of the Out-of-Field Dose in External Beam Photon Radiation Therapy - A Proof of Concept.
Benzazon, Nathan; Carré, Alexandre; de Kermenguy, François; Niyoteka, Stéphane; Maury, Pauline; Colnot, Julie; M'hamdi, Meissane; Aichi, Mohammed El; Veres, Cristina; Allodji, Rodrigue; de Vathaire, Florent; Sarrut, David; Journy, Neige; Alapetite, Claire; Grégoire, Vincent; Deutsch, Eric; Diallo, Ibrahima; Robert, Charlotte.
Afiliação
  • Benzazon N; Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France. Electronic address: nathan.benzazon@gusta
  • Carré A; Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France.
  • de Kermenguy F; Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France.
  • Niyoteka S; Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France.
  • Maury P; Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France.
  • Colnot J; Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France; THERYQ, PMB-Alcen, Peynier, France.
  • M'hamdi M; Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France.
  • Aichi ME; Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France.
  • Veres C; Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France.
  • Allodji R; Unité Mixte de Recherche (UMR) 1018 Centre de Recherche en épidémiologie et Santé des Populations (CESP), Radiation Epidemiology Team, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France.
  • de Vathaire F; Unité Mixte de Recherche (UMR) 1018 Centre de Recherche en épidémiologie et Santé des Populations (CESP), Radiation Epidemiology Team, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France.
  • Sarrut D; Université de Lyon; CREATIS; CNRS UMR5220; Inserm U1294; INSA-Lyon; Léon Bérard cancer center, Lyon, France.
  • Journy N; Unité Mixte de Recherche (UMR) 1018 Centre de Recherche en épidémiologie et Santé des Populations (CESP), Radiation Epidemiology Team, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France.
  • Alapetite C; Department of Radiotherapy, Institut Curie, Paris, France.
  • Grégoire V; Department of Radiation Oncology, centre Léon-Bérard, Lyon, France.
  • Deutsch E; Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France.
  • Diallo I; Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France.
  • Robert C; Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France.
Int J Radiat Oncol Biol Phys ; 120(1): 253-264, 2024 Sep 01.
Article em En | MEDLINE | ID: mdl-38554830
ABSTRACT

PURPOSE:

The dose deposited outside of the treatment field during external photon beam radiation therapy treatment, also known as out-of-field dose, is the subject of extensive study as it may be associated with a higher risk of developing a second cancer and could have deleterious effects on the immune system that compromise the efficiency of combined radio-immunotherapy treatments. Out-of-field dose estimation tools developed today in research, including Monte Carlo simulations and analytical methods, are not suited to the requirements of clinical implementation because of their lack of versatility and their cumbersome application. We propose a proof of concept based on deep learning for out-of-field dose map estimation that addresses these limitations. METHODS AND MATERIALS For this purpose, a 3D U-Net, considering as inputs the in-field dose, as computed by the treatment planning system, and the patient's anatomy, was trained to predict out-of-field dose maps. The cohort used for learning and performance evaluation included 3151 pediatric patients from the FCCSS database, treated in 5 clinical centers, whose whole-body dose maps were previously estimated with an empirical analytical method. The test set, composed of 433 patients, was split into 5 subdata sets, each containing patients treated with devices unseen during the training phase. Root mean square deviation evaluated only on nonzero voxels located in the out-of-field areas was computed as performance metric.

RESULTS:

Root mean square deviations of 0.28 and 0.41 cGy/Gy were obtained for the training and validation data sets, respectively. Values of 0.27, 0.26, 0.28, 0.30, and 0.45 cGy/Gy were achieved for the 6 MV linear accelerator, 16 MV linear accelerator, Alcyon cobalt irradiator, Mobiletron cobalt irradiator, and betatron device test sets, respectively.

CONCLUSIONS:

This proof-of-concept approach using a convolutional neural network has demonstrated unprecedented generalizability for this task, although it remains limited, and brings us closer to an implementation compatible with clinical routine.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dosagem Radioterapêutica / Planejamento da Radioterapia Assistida por Computador / Fótons / Estudo de Prova de Conceito / Aprendizado Profundo Limite: Child / Humans Idioma: En Revista: Int J Radiat Oncol Biol Phys Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dosagem Radioterapêutica / Planejamento da Radioterapia Assistida por Computador / Fótons / Estudo de Prova de Conceito / Aprendizado Profundo Limite: Child / Humans Idioma: En Revista: Int J Radiat Oncol Biol Phys Ano de publicação: 2024 Tipo de documento: Article