Kirigami tripod-based electrode for the development of highly stretchable dengue aptasensor.
Biomed Microdevices
; 26(2): 21, 2024 04 01.
Article
em En
| MEDLINE
| ID: mdl-38558326
ABSTRACT
Kirigami is one of the interesting paper art forms and the modified sub-class of origami. Kirigami paper art is widely employed in a variety of applications, and it is currently being used in biosensors because of its outstanding advantages. This is the first study on the use of a Kirigami-based aptasensor for DENV (Dengue virus)-antigen detection. In this study, the kirigami approach has been utilized to develop a stretchable, movable, and flexible sensor. The constructed stretchable-kirigami electrode helps in adjusting the connection of electrodes without disturbing the electrochemical cell zone during the experiment. To increase the sensitivity of this biosensor we have synthesized Ag-NPs (Silver nanoparticles) via chemical methods and characterized their results with the help of TEM & UV-Vis Spectroscopy. Different electrochemical approaches were used to validate the sensor response i.e., CV (Cyclic voltammetry) and LSV (Linear sweep voltammetry), which exhibited great detection capability towards dengue virus with the range of 0.1 µg/ml to 1000 µg/ml along with a detection limit of 0.1 µg/ml and showing no reactivity to the chikungunya virus antigen, making it more specific to the DENV antigen. Serum (healthy-human) was also successfully applied to validate the results of the constructed aptasensor. Integration of the Kirigami approach form with the electrochemical aptasensor that utilizes a 3-E setup (three-electrode setup) which is referred to as a tripod and collectively called Kirigami-tripod-based aptasensor. Thus, the developed integrated platform improves the sensors capabilities in terms of cost efficiency, high stretchability, and sensitivity.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Técnicas Biossensoriais
/
Dengue
/
Aptâmeros de Nucleotídeos
/
Nanopartículas Metálicas
Limite:
Humans
Idioma:
En
Revista:
Biomed Microdevices
Assunto da revista:
ENGENHARIA BIOMEDICA
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Índia