Your browser doesn't support javascript.
loading
Validation of alopecia coding in US claims data among women of childbearing age.
Schneeweiss, Maria C; Mostaghimi, Arash; Chiuve, Stephanie; Schneeweiss, Sebastian; Anand, Priyanka; Schoder, Katharina; Oduol, Theresa; Huisingh, Carrie; Lin, Kueiyu Joshua.
Afiliação
  • Schneeweiss MC; Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
  • Mostaghimi A; Harvard Medical School, Boston, Massachusetts, USA.
  • Chiuve S; Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA.
  • Schneeweiss S; Harvard Medical School, Boston, Massachusetts, USA.
  • Anand P; Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA.
  • Schoder K; AbbVie, Inc., North Chicago, Illinois, USA.
  • Oduol T; Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
  • Huisingh C; Harvard Medical School, Boston, Massachusetts, USA.
  • Lin KJ; Clinical Phenotyping and Outcome Validation Program, Mass General Brigham Center for Integrated Healthcare Data Research, Boston, Massachusetts, USA.
Pharmacoepidemiol Drug Saf ; 33(4): e5782, 2024 Apr.
Article em En | MEDLINE | ID: mdl-38566351
ABSTRACT

BACKGROUND:

Accurately identifying alopecia in claims data is important to study this rare medication side effect.

OBJECTIVES:

To develop and validate a claims-based algorithm to identify alopecia in women of childbearing age.

METHODS:

We linked electronic health records from a large healthcare system in Massachusetts (Mass General Brigham) with Medicaid claims data from 2016 through 2018 to identify all women aged 18 to 50 years with an ICD-10 code for alopecia, including alopecia areata, androgenic alopecia, non-scarring alopecia, or cicatricial alopecia, from a visit to the MGB system. Using eight predefined algorithms to identify alopecia in Medicaid claims data, we randomly selected 300 women for whom we reviewed their charts to validate the alopecia diagnosis. Positive predictive values (PPVs) were computed for the primary algorithm and seven algorithm variations, stratified by race.

RESULTS:

Out of 300 patients with at least 1 ICD-10 code for alopecia in the Medicaid claims, 286 had chart-confirmed alopecia (PPV = 95.3%). The algorithm requiring two diagnosis codes plus one prescription claim for alopecia treatment identified 55 patients (PPV = 100%). The algorithm requiring 1 diagnosis code for alopecia plus 1 procedure claim for intralesional triamcinolone injection identified 35 patients (PPV = 100%). Across all 8 algorithms tested, the PPV varied between 95.3% and 100%. The PPV for alopecia ranged from 94% to 100% in White and 96%-100% in 48 non-White women. The exact date of alopecia onset was difficult to determine in charts.

CONCLUSION:

At least one recorded ICD-10 code for alopecia in claims data identified alopecia in women of childbearing age with high accuracy.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Classificação Internacional de Doenças / Alopecia em Áreas Limite: Adolescent / Adult / Female / Humans / Middle aged País/Região como assunto: America do norte Idioma: En Revista: Pharmacoepidemiol Drug Saf Assunto da revista: EPIDEMIOLOGIA / TERAPIA POR MEDICAMENTOS Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Classificação Internacional de Doenças / Alopecia em Áreas Limite: Adolescent / Adult / Female / Humans / Middle aged País/Região como assunto: America do norte Idioma: En Revista: Pharmacoepidemiol Drug Saf Assunto da revista: EPIDEMIOLOGIA / TERAPIA POR MEDICAMENTOS Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos