Your browser doesn't support javascript.
loading
Spatially resolved current density distribution in GaN-based flip-chip green mini-LEDs by microscopic hyperspectral imaging and modified two-level modeling.
Opt Express ; 32(6): 8929-8936, 2024 Mar 11.
Article em En | MEDLINE | ID: mdl-38571138
ABSTRACT
A modified two-level model is proposed to study the spatially resolved current density distribution of GaN-based green miniaturized light-emitting diodes (mini-LEDs), combining with microscopic hyperspectral imaging. We found that the spatially resolved current density distribution reveals both the radiative and non-radiative recombination mappings, which can also be provided separately by this model. In addition, higher current density is not necessarily correlated with higher photon emission, especially for the regions around the electrode edges, where the high current density suggests current crowding and defect-related non-radiative recombination. The current density distribution of mini-LEDs is further verified by the laser-beam-induced current (LBIC) and the spatially resolved mappings of peak wavelength and FWHM. The modified two-level model also offers radiative/non-radiative mappings and is proved to be beneficial to determine the micro-zone current density distribution and to reveal the intrinsic radiative/non-radiative recombination mechanism of mini-LEDs.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Opt Express Assunto da revista: OFTALMOLOGIA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Opt Express Assunto da revista: OFTALMOLOGIA Ano de publicação: 2024 Tipo de documento: Article