Your browser doesn't support javascript.
loading
A simultaneous knockout knockin genome editing strategy in HSPCs potently inhibits CCR5- and CXCR4-tropic HIV-1 infection.
Dudek, Amanda M; Feist, William N; Sasu, Elena J; Luna, Sofia E; Ben-Efraim, Kaya; Bak, Rasmus O; Cepika, Alma-Martina; Porteus, Matthew H.
Afiliação
  • Dudek AM; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
  • Feist WN; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
  • Sasu EJ; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
  • Luna SE; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
  • Ben-Efraim K; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
  • Bak RO; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, 8000 Aarhus, Denmark.
  • Cepika AM; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
  • Porteus MH; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. Electronic address: mporteus@stanford.edu.
Cell Stem Cell ; 31(4): 499-518.e6, 2024 Apr 04.
Article em En | MEDLINE | ID: mdl-38579682
ABSTRACT
Allogeneic hematopoietic stem and progenitor cell transplant (HSCT) of CCR5 null (CCR5Δ32) cells can be curative for HIV-1-infected patients. However, because allogeneic HSCT poses significant risk, CCR5Δ32 matched bone marrow donors are rare, and CCR5Δ32 transplant does not confer resistance to the CXCR4-tropic virus, it is not a viable option for most patients. We describe a targeted Cas9/AAV6-based genome editing strategy for autologous HSCT resulting in both CCR5- and CXCR4-tropic HIV-1 resistance. Edited human hematopoietic stem and progenitor cells (HSPCs) maintain multi-lineage repopulation capacity in vivo, and edited primary humancells potently inhibit infection by both CCR5-tropic and CXCR4-tropic HIV-1. Modification rates facilitated complete loss of CCR5-tropic replication and up to a 2,000-fold decrease in CXCR4-tropic replication without CXCR4 locus disruption. This multi-factor editing strategy in HSPCs could provide a broad approach for autologous HSCT as a functional cure for both CCR5-tropic and CXCR4-tropic HIV-1 infections.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Infecções por HIV / HIV-1 / Edição de Genes Limite: Humans Idioma: En Revista: Cell Stem Cell Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Infecções por HIV / HIV-1 / Edição de Genes Limite: Humans Idioma: En Revista: Cell Stem Cell Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos