Your browser doesn't support javascript.
loading
Catch bond kinetics are instrumental to cohesion of fire ant rafts under load.
Wagner, Robert J; Lamont, Samuel C; White, Zachary T; Vernerey, Franck J.
Afiliação
  • Wagner RJ; Sibley School of Mechanical & Aerospace Engineering, Cornell University, Ithaca, NY.
  • Lamont SC; Paul M. Rady School of Mechanical Engineering, University of Colorado, Boulder, CO.
  • White ZT; Paul M. Rady School of Mechanical Engineering, University of Colorado, Boulder, CO.
  • Vernerey FJ; Paul M. Rady School of Mechanical Engineering, University of Colorado, Boulder, CO.
Proc Natl Acad Sci U S A ; 121(17): e2314772121, 2024 Apr 23.
Article em En | MEDLINE | ID: mdl-38621122
ABSTRACT
Dynamic networks composed of constituents that break and reform bonds reversibly are ubiquitous in nature owing to their modular architectures that enable functions like energy dissipation, self-healing, and even activity. While bond breaking depends only on the current configuration of attachment in these networks, reattachment depends also on the proximity of constituents. Therefore, dynamic networks composed of macroscale constituents (not benefited by the secondary interactions cohering analogous networks composed of molecular-scale constituents) must rely on primary bonds for cohesion and self-repair. Toward understanding how such macroscale networks might adaptively achieve this, we explore the uniaxial tensile response of 2D rafts composed of interlinked fire ants (S. invicta). Through experiments and discrete numerical modeling, we find that ant rafts adaptively stabilize their bonded ant-to-ant interactions in response to tensile strains, indicating catch bond dynamics. Consequently, low-strain rates that should theoretically induce creep mechanics of these rafts instead induce elastic-like response. Our results suggest that this force-stabilization delays dissolution of the rafts and improves toughness. Nevertheless, above 35[Formula see text] strain low cohesion and stress localization cause nucleation and growth of voids whose coalescence patterns result from force-stabilization. These voids mitigate structural repair until initial raft densities are restored and ants can reconnect across defects. However mechanical recovery of ant rafts during cyclic loading suggests that-even upon reinstatement of initial densities-ants exhibit slower repair kinetics if they were recently loaded at faster strain rates. These results exemplify fire ants' status as active agents capable of memory-driven, stimuli-response for potential inspiration of adaptive structural materials.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Formigas / Formigas Lava-Pés Limite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Formigas / Formigas Lava-Pés Limite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2024 Tipo de documento: Article