Your browser doesn't support javascript.
loading
Ketogenesis attenuated KLF5 disrupts iron homeostasis via LIF to confer oxaliplatin vulnerability in colorectal cancer.
Jiang, Haoran; Zeng, Yuan; Jiang, Xue; Xu, Xuni; Zhao, Lihao; Yuan, Xiaoye; Xu, Jun; Zhao, Mengjing; Wu, Fang; Li, Gang.
Afiliação
  • Jiang H; Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, Ch
  • Zeng Y; Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
  • Jiang X; Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, Ch
  • Xu X; Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, Ch
  • Zhao L; Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, Ch
  • Yuan X; Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, Ch
  • Xu J; Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
  • Zhao M; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China. Elec
  • Wu F; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, Chin
  • Li G; Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, Ch
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167210, 2024 Aug.
Article em En | MEDLINE | ID: mdl-38704001
ABSTRACT
Oxaliplatin has been included as a basal drug in various chemotherapy regimens for colorectal cancer (CRC), a global health concern. However, acquired resistance to oxaliplatin affects the prognosis. This study aimed to determine whether the consumption of a KD increases the sensitivity of CRC cells to oxaliplatin via the inhibition of a classical stem cell marker, Krupple-like factor 5 (KLF5). KLF5 functions as a transcription factor for the leukemia inhibitory factor (LIF) and directly binds to its promoter region. LIF upregulation induces dephosphorylation of metal regulatory transcription factor 1 (MTF1), which is recruited to the promoter area of Ferroportin (FPN1), the only cellular iron exporter. FPN1 upregulation reduces the labile iron pool (LIP) and ferroptosis in CRC cells. KLF5 knockdown inhibits the LIF/MTF1/FPN1 axis and induces iron overload, thereby conferring sensitivity to oxaliplatin to CRC cells. KD mimicked KLF5 silencing and sensitized CRC cells to oxaliplatin via a similar mechanism. Thus, potential correlations were observed among ketogenesis, stemness, and iron homeostasis. This finding can be used to formulate a new strategy for overcoming oxaliplatin resistance in patients with CRC.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Colorretais / Resistencia a Medicamentos Antineoplásicos / Proteínas de Transporte de Cátions / Fatores de Transcrição Kruppel-Like / Fator Inibidor de Leucemia / Oxaliplatina / Homeostase / Ferro Limite: Animals / Humans Idioma: En Revista: Biochim Biophys Acta Mol Basis Dis Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Colorretais / Resistencia a Medicamentos Antineoplásicos / Proteínas de Transporte de Cátions / Fatores de Transcrição Kruppel-Like / Fator Inibidor de Leucemia / Oxaliplatina / Homeostase / Ferro Limite: Animals / Humans Idioma: En Revista: Biochim Biophys Acta Mol Basis Dis Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Suíça