Your browser doesn't support javascript.
loading
Estrogen Induces LCAT to Maintain Cholesterol Homeostasis and Suppress Hepatocellular Carcinoma Development.
He, Wenzhi; Wang, Min; Zhang, Xuechun; Wang, Yilan; Zhao, Dongli; Li, Wenhua; Lei, Fang; Peng, Min; Zhang, Zhonglin; Yuan, Yufeng; Huang, Zan.
Afiliação
  • He W; Hubei Key Laboratory of Cell Homeostasis, Department of Hepatobiliary and Pancreatic Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, China.
  • Wang M; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, PR China.
  • Zhang X; Hubei Key Laboratory of Cell Homeostasis, Department of Hepatobiliary and Pancreatic Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, China.
  • Wang Y; Hubei Key Laboratory of Cell Homeostasis, Department of Hepatobiliary and Pancreatic Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, China.
  • Zhao D; Hubei Key Laboratory of Cell Homeostasis, Department of Hepatobiliary and Pancreatic Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, China.
  • Li W; Hubei Key Laboratory of Cell Homeostasis, Department of Hepatobiliary and Pancreatic Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, China.
  • Lei F; Hubei Key Laboratory of Cell Homeostasis, Department of Hepatobiliary and Pancreatic Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, China.
  • Peng M; School of Basic Medicine, Institute of Model Animal, Wuhan University, Wuhan, China.
  • Zhang Z; Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.
  • Yuan Y; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, PR China.
  • Huang Z; Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
Cancer Res ; 84(15): 2417-2431, 2024 Aug 01.
Article em En | MEDLINE | ID: mdl-38718297
ABSTRACT
Hepatocellular carcinoma (HCC) is an aggressive disease that occurs predominantly in men. Estrogen elicits protective effects against HCC development. Elucidation of the estrogen-regulated biological processes that suppress HCC could lead to improved prevention and treatment strategies. Here, we performed transcriptomic analyses on mouse and human liver cancer and identified lecithin cholesterol acyltransferase (LCAT) as the most highly estrogen-upregulated gene and a biomarker of favorable prognosis. LCAT upregulation inhibited HCC in vitro and in vivo and mediated estrogen-induced suppression of HCC in an ESR1-dependent manner. LCAT facilitated high-density lipoprotein cholesterol production and uptake via the LDLR and SCARB1 pathways. Consistently, high HDL-C levels corresponded to a favorable prognosis in HCC patients. The enhanced HDL-C absorption induced by LCAT impaired SREBP2 maturation, which ultimately suppressed cholesterol biosynthesis and dampened HCC cell proliferation. HDL-C alone inhibited HCC growth comparably to the cholesterol-lowering drug lovastatin, and SREBF2 overexpression abolished the inhibitory activity of LCAT. Clinical observations and cross-analyses of multiple databases confirmed the correlation of elevated LCAT and HDL-C levels to reduced cholesterol synthesis and improved HCC patient prognosis. Furthermore, LCAT deficiency mimicked whereas LCAT overexpression abrogated the tumor growth-promoting effects of ovariectomy in HCC-bearing female mice. Most importantly, HDL-C and LCAT delayed the development of subcutaneous tumors in nude mice, and HDL-C synergized with lenvatinib to eradicate orthotopic liver tumors. Collectively, this study reveals that estrogen upregulates LCAT to maintain cholesterol homeostasis and to dampen hepatocarcinogenesis. LCAT and HDL-C represent potential prognostic and therapeutic biomarkers for targeting cholesterol homeostasis as a strategy for treating HCC.

Significance:

Estrogen mediates the sex differences in hepatocellular carcinoma development by reducing cholesterol biosynthesis through activation of an LCAT/HDL-C axis, providing strategies for improving liver cancer prevention, prognosis, and treatment.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Colesterol / Carcinoma Hepatocelular / Estrogênios / Homeostase / Fosfatidilcolina-Esterol O-Aciltransferase / Neoplasias Hepáticas Limite: Animals / Female / Humans / Male Idioma: En Revista: Cancer Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Colesterol / Carcinoma Hepatocelular / Estrogênios / Homeostase / Fosfatidilcolina-Esterol O-Aciltransferase / Neoplasias Hepáticas Limite: Animals / Female / Humans / Male Idioma: En Revista: Cancer Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China