Your browser doesn't support javascript.
loading
Metabolic-associated fatty liver voxel-based quantification on CT images using a contrast adapted automatic tool.
Martín-Saladich, Queralt; Pericàs, Juan M; Ciudin, Andreea; Ramirez-Serra, Clara; Escobar, Manuel; Rivera-Esteban, Jesús; Aguadé-Bruix, Santiago; González Ballester, Miguel A; Herance, José Raul.
Afiliação
  • Martín-Saladich Q; Nuclear Medicine, Radiology and Cardiology Departments, Medical Molecular Imaging Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Autonomous University Barcelona, Barcelona 08035, Spain; Department of Information and Communication Technologies, BCN MedTech
  • Pericàs JM; Vall d'Hebron Institute for Research, Liver Unit, Vall d'Hebron University Hospital, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid 28029, Spain.
  • Ciudin A; Endocrinology Department, Diabetes and Metabolism Research Group, VHIR, Vall d'Hebron University Hospital, Autonomous University Barcelona, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029,
  • Ramirez-Serra C; Clinical Biochemistry Research Group, Vall d'Hebron Research Institute (VHIR), Biochemical Core Facilities, Vall d'Hebron University Hospital, Autonomous University Barcelona, Barcelona 08035, Spain.
  • Escobar M; Nuclear Medicine, Radiology and Cardiology Departments, Medical Molecular Imaging Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Autonomous University Barcelona, Barcelona 08035, Spain.
  • Rivera-Esteban J; Vall d'Hebron Institute for Research, Liver Unit, Vall d'Hebron University Hospital, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid 28029, Spain.
  • Aguadé-Bruix S; Nuclear Medicine, Radiology and Cardiology Departments, Medical Molecular Imaging Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Autonomous University Barcelona, Barcelona 08035, Spain.
  • González Ballester MA; Department of Information and Communication Technologies, BCN MedTech, Universitat Pompeu Fabra, Barcelona 08018, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain.
  • Herance JR; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid 28029, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid 28029, Spain. Electronic addr
Med Image Anal ; 95: 103185, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38718716
ABSTRACT
BACKGROUND &

AIMS:

Metabolic-dysfunction associated fatty liver disease (MAFLD) is highly prevalent and can lead to liver complications and comorbidities, with non-invasive tests such as vibration-controlled transient elastography (VCTE) and invasive liver biopsies being used for diagnosis The aim of the present study was to develop a new fully automatized method for quantifying the percentage of fat in the liver based on a voxel analysis on computed tomography (CT) images to solve previously unconcluded diagnostic deficiencies either in contrast (CE) or non-contrast enhanced (NCE) assessments.

METHODS:

Liver and spleen were segmented using nn-UNet on CE- and NCE-CT images. Radiodensity values were obtained for both organs for defining the key benchmarks for fatty liver assessment liver mean, liver-to-spleen ratio, liver-spleen difference, and their average. VCTE was used for validation. A classification task method was developed for detection of suitable patients to fulfill maximum reproducibility across cohorts and highlight subjects with other potential radiodensity-related diseases.

RESULTS:

Best accuracy was attained using the average of all proposed benchmarks being the liver-to-spleen ratio highly useful for CE and the liver-to-spleen difference for NCE. The proposed whole-organ automatic segmentation displayed superior potential when compared to the typically used manual region-of-interest drawing as it allows to accurately obtain the percent of fat in liver, among other improvements. Atypical patients were successfully stratified through a function based on biochemical data.

CONCLUSIONS:

The developed method tackles the current drawbacks including biopsy invasiveness, and CT-related weaknesses such as lack of automaticity, dependency on contrast agent, no quantification of the percentage of fat in liver, and limited information on region-to-organ affectation. We propose this tool as an alternative for individualized MAFLD evaluation by an early detection of abnormal CT patterns based in radiodensity whilst abording detection of non-suitable patients to avoid unnecessary exposure to CT radiation. Furthermore, this work presents a surrogate aid for assessing fatty liver at a primary assessment of MAFLD using elastography data.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tomografia Computadorizada por Raios X Limite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Med Image Anal Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tomografia Computadorizada por Raios X Limite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Med Image Anal Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2024 Tipo de documento: Article