Your browser doesn't support javascript.
loading
Mapping model units to visual neurons reveals population code for social behaviour.
Cowley, Benjamin R; Calhoun, Adam J; Rangarajan, Nivedita; Ireland, Elise; Turner, Maxwell H; Pillow, Jonathan W; Murthy, Mala.
Afiliação
  • Cowley BR; Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA. cowley@cshl.edu.
  • Calhoun AJ; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. cowley@cshl.edu.
  • Rangarajan N; Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
  • Ireland E; Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
  • Turner MH; Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
  • Pillow JW; Department of Neurobiology, Stanford University, Stanford, CA, USA.
  • Murthy M; Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
Nature ; 629(8014): 1100-1108, 2024 May.
Article em En | MEDLINE | ID: mdl-38778103
ABSTRACT
The rich variety of behaviours observed in animals arises through the interplay between sensory processing and motor control. To understand these sensorimotor transformations, it is useful to build models that predict not only neural responses to sensory input1-5 but also how each neuron causally contributes to behaviour6,7. Here we demonstrate a novel modelling approach to identify a one-to-one mapping between internal units in a deep neural network and real neurons by predicting the behavioural changes that arise from systematic perturbations of more than a dozen neuronal cell types. A key ingredient that we introduce is 'knockout training', which involves perturbing the network during training to match the perturbations of the real neurons during behavioural experiments. We apply this approach to model the sensorimotor transformations of Drosophila melanogaster males during a complex, visually guided social behaviour8-11. The visual projection neurons at the interface between the optic lobe and central brain form a set of discrete channels12, and prior work indicates that each channel encodes a specific visual feature to drive a particular behaviour13,14. Our model reaches a different

conclusion:

combinations of visual projection neurons, including those involved in non-social behaviours, drive male interactions with the female, forming a rich population code for behaviour. Overall, our framework consolidates behavioural effects elicited from various neural perturbations into a single, unified model, providing a map from stimulus to neuronal cell type to behaviour, and enabling future incorporation of wiring diagrams of the brain15 into the model.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Comportamento Social / Percepção Visual / Encéfalo / Lobo Óptico de Animais não Mamíferos / Drosophila melanogaster / Modelos Neurológicos / Neurônios Limite: Animals Idioma: En Revista: Nature Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Comportamento Social / Percepção Visual / Encéfalo / Lobo Óptico de Animais não Mamíferos / Drosophila melanogaster / Modelos Neurológicos / Neurônios Limite: Animals Idioma: En Revista: Nature Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos